Microbial Electrocatalysis:
Synthetic Biology Meets Energy and The Environment

Hao SONG, Professor
School of Chemical Engineering and Technology
Key Laboratory of Systems Bioengineering (MOE)
Tianjin University

2017 China-America Frontiers of Engineering Symposium (CAFOE)
June 22-24, 2017
Microbial Electrocatalysis (cell discharge/charge)

Fundamental mechanisms:
Microbial extracellular electron transfer

Microbial electrocatalysis

Microbial electrosynthesis (cells intake electrons from electrodes, converting to reducing equivalents)

Microbial consortia (methane fermentation, anaerobic digestion)

Cell Charge

Cell discharge

Cell-cell exchange of electrons

Bio-mining

Microbial fuel cells

Microbial electrolysis cells (H2)

Unbalanced fermentation (anaerobic respiration)

CO2

Chemicals

Microbial electrosynthesis (cells intake electrons from electrodes, converting to reducing equivalents)
Microbial cell discharge

Microbial fuel cells in wastewater treatment: degrade wastes and harvest electricity

Microbial electrolysis cells (H₂ production)

Marine sediment fuel cell (Military use: power distributed—sensors)

Biomining: Uranium, gold, etc.

Gold
Microbial cell charge

Microbial Electrosynthesis ——
A new and efficient biosynthesis approach

The efficiency of Electrosynthesis is much higher than Photosynthesis

Moorella thermoacetica

Electrofuel project, US DOE

Yang Peidong* et al., Science, 2016
Extracellular electron transfer is critical in Industrial/Environmental fermentation processes

Interspecies Electron transfer

Methanogenesis

Anaerobic Digestion

Interspecies H₂ Transfer

Direct Interspecies Electron Transfer via Nanowires

Interspecies Electron Transfer Mediated by Electron Transport through Conductive Activated Carbon

Current Opinion in Biotechnology, 2013
Key scientific issues about “Microbial Electrochemical Systems” (MES): Low efficiency of electron transfer between “cell-electrode interfaces”, which limits industrial applications of microbial electrocatalysis systems.

Engineering Strategies:
1) Engineering cells
2) Strengthen “cell-electrode interfaces”

Electroactive/Conductive Biofilm
Three Mechanisms of Extracellular electron transfer

a. Direct contact-based

b. Shuttle-mediated

c. Conductive pili-based (conductive matrix in the biofilm)
Reconstruct extracellular electron transfer pathways
Micro-, meso-, and macro-scale rational design approaches

In micro-scale level (single cell level): increase biosynthesis and transport of electron shuttle

In meso-scale level (biofilm): rational design graphene-cell 3D self-assembled conductive biofilm.

In macro-scale level: fermenter-exoelectrogen microbial consortia

E. coli
Shewanella

Solve the problem of limited spectrum of carbon sources of exoelectrogens (e.g., xylose)

Power increase ~10x

Inward electron transfer, ~15 folds

3D self-assembled conductive biofilm

Power increase ~25 folds

Inward electron transfer, ~74 folds

ACS Catalysis 2015, 5: 6937.
ACS Synthetic Biol. 2015, 4: 815.
ACS Synthetic Biol. 2017 in press
Biotechnology for Biofuels, 2017 in press
Bioresource Tech. 2013, 130: 763.

Biotech. & Bioeng. 2015, 112: 2051.
Development of Genomic regulation Tools in *Shewanella*

CRISPRi: transcriptional regulation of gene expression

sRNA: translational regulation of gene expression

CRISPRi–sRNA: Synergistic Transcriptional–Translational Regulation of genes expression

H. Song*, et al., ACS Synth Biol, 2017 in press
Rewire cell metabolism: (1) cofactor engineering, knock-out lactate biosynthesis

Knockout lactate synthesis

E. coli

NADH is the reducing power, releasable intracellular electron pool.
But, large amount of electrons were stored in lactate

In micro-scale level (single cell level): Increase biosynthesis and transport of electron shuttle

H. Song*, et al., *Electrochem Comm*, 2012
Rewire cell metabolism:
(2) Cofactor engineering, increase anaerobic TCA cycle

E. coli

Glucose → NAD⁺ → NADH → Pyruvate → Succinate → NAD⁺

PEP → NAD⁺ → NADH → Ethanol → CO₂

TCA Cycle

H₂ → Formate → Acetate → Lactate → ArcA/B

Electron transfer is increased efficiently

Specific enzyme activity

- **CS**
 - BL21: 150
 - arcA⁻: 300

- **OGDH**
 - BL21: 10
 - arcA⁻: 20

- **SDH**
 - BL21: 2
 - arcA⁻: 1

Electron transfer is increased efficiently

Current density (µA/cm²)

- BL21
- arcA⁻

Cell voltage (mV)

- BL21
- arcA⁻

Power density (mW/m²)

- BL21
- arcA⁻

H. Song*, et al., ACS Catalysis, 2012
Modular design approach in engineering NAD biosynthesis pathways: increase total NAD level

(A) Modular assembly of critical genes

(B) Enhanced extracellular electron transfer

3.4X increase

H. Song* et al., to be submitted

Engineered Shewanella

WT–Shewanella oneidensis
Rewire cell metabolism - cofactor NADH

(4) Regulate NADH/NAD\(^+\) ratio

Enhanced extracellular electron transfer

H. Song* et al., to be submitted
(5) Electron shuttle biosynthesis: Increase biosynthesis of riboflavin (vitamin B2)

Bacillus VB2 biosynthesis into Shewanella

VB2 biosynthesis in Shewanella increased 25 times

Output power increase ~10x

Microbial electrosynthesis ~15x

H. Song*, et al. ACS Synthetic Biology, 2015
Membrane Engineering:
Increase cell permeability, thus accelerate shuttle transport

Porin synthesis

Morphology and permeability change (AFM images)

Wild-type cell membrane

Engineered Cell membrane

Increase Electron Transfer Efficiency

(1) Genetic engineering of electroactive biofilm

Second messenger c-di-GMP regulates biofilm formation

In Meso-scale (multi-cellular)
Construction of conductive biofilm

Engineering conductive biofilm, Electron transfer efficiency increased 3X

H. Song*, et al., Biotech & Bioeng, 2015
Self-assembled 3D electroactive biofilm

Shewanella reduces graphene oxide, and self-assembly with rGO

Electron transfer increase ~25 X

Inward electron transfer increases ~74倍

(3) Artificial conductive pili

Artificial conductive pili

Graphene anode

S. oneidensis MR-1 cell

Lactate $\rightarrow CO_2$

Electronic transfer path

Cytochrome protein (OmcA)

Reductive Oxidative

Electron transfer path

3D Graphene/PANI electrode

PANI: 聚吡咯导电高分子

polypyrrole: conductive polymer

\sim3X increase in electron transfer

H. Song* et al., ACS Nano, 2012
Conductive artificial biofilm complex matrix

Graphite + conductive polymer + electrogen

Morphology of biofilm complex

8X increase in electron transfer than naturally occurring biofilm

Chem. Comm., 2011
Chem Comm., 2013
On Macro-scale level: Design microbial consortia

Genetic engineering single cells

- ACS Synthetic Biology, (2015)
- Chemical Communications, (2015)
- Biotech and Bioeng, (2013).
- Chemical Communications, (2013).
- Chemical Communications, (2011).

Existing key questions:
- Narrow spectrum of carbon sources.
- Intensive engineering of exoelectrogens may lead to lower viability of cells

Microbial consortia: Division of Labor

Carbon source

fermenters → Exoelectrogens

Other microbes

Electrodes
For example, we incorporate xylose utilization function into *Shewanella*, resulting in a low power output, $\sim 2\text{mW/m}^2$.

H. Song et al., Biotechnology for Biofuels, 2017
(1) “Fermenter-exoelectrogen” microbial consortia: Expand the spectrum of carbon sources

Principle “Division of Labor”: fermenter + exoelectrogen

E. coli

- Xylose → Xyritol → Xylose → Xylose-5-P → Ribulose-5-P
- Glycerate-3-P → Succinate → Pyruvate → Formate
- Phosphoenol-pyruvate → Pyruvate → Lacatate → Ethanol → Acetate

Riboflavin synthesis pathway

- **E. coli** synthesize riboflavin, used by **Shewanella** as electron shuttle
- **Metabolites exchange**: E. coli → lactate/formate → Shewanella
Incorporate flavin biosynthesis pathway from *Bacillus* into *E. coli*, producing electron shuttle.

WT E. coli - WT Shewanella
2). Symbiotic *Saccharomyces-Shewanella* for microbial electrocatalysis

Saccharomyces (fermenter) – *Shewanella* (electrogen) consortium

Engineered yeast:
- Lactic acid biosynthesis
- No ethanol biosynthesis

Engineered *Shewanella*:
- Lactate utilization
- Electro-active biofilm

Engineering lactate transporter in *Shewanella*

H. Song*, AIChE J. 2017
3). Three microbes’ consortia: *E. coli*-Bacillus-Shewanella

Division of labor

Interactions between the 3 species

Achieve a highest coulombic efficiency

<table>
<thead>
<tr>
<th></th>
<th>Coulombs of charge</th>
<th>Conversion efficiency (ε_m) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. oneidensis + E. coli-Lac-Rib</td>
<td>188.4</td>
<td>31.6</td>
</tr>
<tr>
<td>S. oneidensis + E. coli-Rib + E. coli-Lac</td>
<td>222.4</td>
<td>37.4</td>
</tr>
<tr>
<td>S. oneidensis + B. subtilis + E. coli-Lac</td>
<td>331.2</td>
<td>55.7</td>
</tr>
</tbody>
</table>

Acknowledgements

✧ **Grants**
- 863 program
- 973 program
- NSFC

✧ **Team members**
- Dr. Yong Yangchun
- Dr. Yang Yun
- Dr. Liu Ting
- Dr. Yu Yangyang
- Dr. Cao Yingxiu
- Mr. Li Feng
- Ms. Hu Yidan
- Ms. Lin Tong
- Ms. Fang Lixia
- Ms. Ding Wenqi
- Ms. Chen Xiaoli
Thank you very much!