Smart Materials and Structures

Takehiko Hiraga,
The University of Tokyo

Kira Barton,
University of Michigan

Robert Shepherd,
Cornell University

Naoya Shibata,
The University of Tokyo

Geoff Brennecka,
Colorado School of Mines, USA

Hidehiro Yoshida,
National Institute for Materials Science, Japan
Smart Materials:

- Responsive in some useful (and often non-intuitive) way to some stimulus or stimuli
- Can be passive, active, or both
- Common examples include:
 - shape memory alloys
 - electrochromic windows
 - self-healing structures
 - ...
Don’t anthropomorphize materials...

They hate that.
<table>
<thead>
<tr>
<th>Input</th>
<th>Mechanical</th>
<th>Thermal</th>
<th>Electrical</th>
<th>Optical</th>
<th>Magnetic</th>
<th>Chemical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>elastic modulus, hardness</td>
<td>mechano-caloric</td>
<td>piezoelectric</td>
<td>triboluminescence</td>
<td>magnetostriction</td>
<td>mechanochem</td>
</tr>
<tr>
<td>Thermal</td>
<td>thermal expansion</td>
<td>heat capacity, thermal conduction</td>
<td>thermoelectric</td>
<td>emissivity</td>
<td>magneto-caloric</td>
<td>endotherm</td>
</tr>
<tr>
<td>Electrical</td>
<td>piezoelectric</td>
<td>Peltier</td>
<td>conductivity, permittivity</td>
<td>LED</td>
<td>induction</td>
<td>electrochemistry</td>
</tr>
<tr>
<td>Optical</td>
<td>photoacoustic</td>
<td>absorption</td>
<td>photoelectric</td>
<td>index of refraction</td>
<td>magneto-optics</td>
<td>photochemistry</td>
</tr>
<tr>
<td>Magnetic</td>
<td>magnetostriction</td>
<td>magneto-caloric</td>
<td>Maxwell</td>
<td>magneto-optics</td>
<td>permeability</td>
<td>magnetochemistry</td>
</tr>
<tr>
<td>Chemical</td>
<td>chem pressure</td>
<td>exothermic</td>
<td>electrochemistry</td>
<td>chemiluminescence</td>
<td>redox mag</td>
<td>reactions</td>
</tr>
</tbody>
</table>
Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke