Learning algorithms for physical systems: challenges and solutions

Ion Matei

Palo Alto Research Center

© 2018 PARC All Rights Reserved
- System analytics: how things are done
- Use of models (physics) to inform AI algorithms
- Use of AI algorithms to inform about the physics
What are we trying to avoid

Solution:
- ADD MORE INTELLIGENCE
Path forward

Awareness

None

Reconfigure

Reoptimize

Automation

 VALUE

Preventive maintenance
 • Scheduled
 • Low automation

Condition-based maintenance
 • Predictive
 • More automation

Self-adaptive assets
 • Proactively reconfigures
 • Highly autonomous

Self-coordinated assets
 • Recognizes key objectives
 • Completely autonomous

Reactive maintenance
 • Fail and fix
 • No automation

Preventative maintenance

Condition-based maintenance

Self-adaptive assets

Self-coordinated assets

Awareness

Sensing
Two Systematic Approaches to Increased Automation

Purely data-driven

Simulink, MATLAB, Modelica, Simscape, Easy5

Purely behavioral

Model-based
Data driven methods

- **Pros:**
 - A plethora of statistical models (regression models, decision trees, neural networks)
 - More and more efficient algorithms for training
 - Easy access to documentation and training platforms
 - Do not require “very” specialized training
Data driven methods

- **Cons:**
 - May require a lot of data which is not always easy to obtain (assets do NOT fail very often)
 - May take a long time to train
 - Loss of explainability (systems are seen as black boxes – nothing is known about the internal structure and behavior)
Data driven methods

- **Training:**

 - Purely data-driven

![Diagram showing a sequence of events with inputs and outputs, including a function f(input; w) and an error feedback loop to adapt w.]
Data driven methods enablers

- Hardware Technology
 - GPU
 - Cheap storage

- “Big data”

www.blogs.gartner.com
Data-driven methods success stories

- Object detection and tracking

- Speech recognition and translations

- Text generation
Data-driven methods success stories, but…

“All the impressive achievements of deep learning amount to just curve fitting.”

Judea Pearl, 2011 ACM Turing award
Model-based methods

Often in Simulink, MATLAB, Modelica, Simscape, Easy5

- Purely behavioral

Pros:

- Vast history of model-based results (reasoning, control, diagnosis, prognosis)
- Well established modeling languages and tools (Matlab, Modelica, Simulink, OpenModelica)
- Support for both causal (input-output maps) and acausal (physics-based) models
- Explainability (can connect to particular components and physical processes)
- Require less data
Two Systematic Approaches to System Analytics

Often in Simulink, MATLAB, Modelica, Simscape, Easy5

Purely behavioral

Model-based

- Cons:
 - Work well for specific classes of problems (e.g. linear systems)
 - Does not always scale to complex systems
 - Modeling complex systems can be expensive
 - Requires deep expertise
 - Models are not very accurate due to simplifying assumptions
Model-based methods

How to benefit from the combining the two approaches?
MODELS \rightarrow \text{MACHINE LEARNING}

MAKE USE OF SYSTEM PROPERTIES (REGULARITIES) THAT ARE INFORMED BY (PARTIAL) MODELS
System regularities

- **Inverted pendulum control**
 - Pendulum stabilization when starting from two opposing angles
 - The force needed to stabilize the pendulum when starting from a left angle can be used when starting from an opposing right angle by changing its sign

Animation produced using a Modelica model
System regularities

- **Inverted pendulum control:** symmetric motion and control
System regularities

- **Robotics**: symmetries in complex robot motion

Animation produced using a Modelica model
System regularities

- **Quadrotor motion planning**
 - Using rotational symmetries we can generate a multitude of additional feasible trajectories from one initial trajectory.
System regularities

- **Geometric symmetries**
 - Transformations that take a system trajectory and produce another system trajectory
 - Can have discrete symmetries:
 - Rotations at a fixed angle
 \[\Gamma(x, u) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \]
 - Parametrized symmetries
 - Lie symmetries
 \[\Gamma_\varepsilon(x, u) = (x + \varepsilon \xi + O(\varepsilon^2), u + \varepsilon \eta + O(\varepsilon^2)) \]
 - Can check for typical symmetries (scaling, translations, rotations)
 - Can be learned from data
Leveraging system regularities for policy learning

- **Reinforcement learning:**
 - Area of machine learning and control that tells us what actions (controls) should we take when interacting with an environment to maximize some reward.
 - Suitable for incomplete, or model free case (or when other methods fail)
 - Requires large amount of data (experience) to learn the best policy
Leveraging system regularities for policy learning

- **Symmetry enhanced reinforcement learning:**
 - Use geometric symmetries to augment the training data set used for policy learning
 - Using a discrete symmetry can double the size of the training data set
 - More symmetries … more data
Leveraging system regularities for policy learning

- **Inverted pendulum example:**
 - State-space discretization: 7 points for the positions, 2 points for the velocity, 8 points for the angle, 2 points for the angular velocity
 - Action space:

action space 1	action space 2	action space 3
[−1, 1]	[−1, 0, 1]	[−1, −0.5, 0.5, 1]

- Smaller number of failures (faster convergence)
- Higher rewards
- Less uncertainty

- Training with symmetry use
- Training without symmetry use
MAKE USE OF MACHINE LEARNING TOOLS (ALGORITHMS) TO LEARN (PHYSICAL) MODELS
CAUSAL VS. ACAUSAL MODELS

CAUSAL MODELS
- Output is completely determined by the current and past inputs, states and outputs
- Typical in machine learning, control and signal processing

ACAUSAL MODELS
- There is no clear notion of input and outputs
- Behavior described by constraints between variables

\[y = f(u) \]
\[p(y|u) \]
LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN SYSTEMS

- Learn a model that fits the data
- What representation?
- How can I make sure it makes sense?
LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN SYSTEMS

- **What representation?**
 - Parametrized constraint equation:
 \[f(x; w) = 0 \]

- **How can I make sure it makes sense?**
 - Impose a priori feasibility constraints on parameters (component does not generate energy, e.g., passive)
LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN SYSTEMS

- **What representation?**
 - Parametrized constraint equation:
 \[f(x; w) = 0 \]

- **How can I make sure it makes sense?**
 - Joint learning of best parameter and their feasibility space (optimization problem with unknown constraints)
LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN SYSTEMS

- Strategy for joint learning of parameters and their constraints:
 - explore-exploit
LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN SYSTEMS

- **How do I learn the feasibility space?**
 - Train a classifier
 - Use the model simulator to label points
LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN SYSTEMS

- What you would expect to learn?
 - At least a local separating hyperplane
LEARNING PHYSICAL MODELS: OTHERS IDEAS

- Build “neural network” like representations

Neural network cell:
 Linear part + activation function (nonlinear)

Acausal neural network cell
Nonlinearities in the damper and springs
LEARNING PHYSICAL MODELS: OTHERS IDEAS

- Build “neural network” like representations
 - Need to add boundary conditions
 - Much more difficult to train
 - forward propagation needs to simulate a dynamical system
 - backward propagation require computation of gradients
LEARNING PHYSICAL MODELS: OTHERS IDEAS

- Discovering Hamiltonians, Lagrangians and other laws of geometric and momentum conservations:
 - Symmetries and invariants underlie almost all physical law
 - Use of genetic algorithms (the main challenge is avoiding trivialities)

\[
L_1^2(m_1 + m_2)\omega_2^2 + m_2L_2^2\omega_2^2 + m_2L_1L_2\omega_1\omega_2\cos(\theta_1 - \theta_2) - 19.6L_1(m_1 + m_2)\cos \theta_1 - 19.6m_2L_2 \cos \theta_2
\]

Hamiltonian

M. Schmidt, Hod Lipson, "Distilling Free-Form Natural Laws from Experimental Data," Science Magazine
Where we are today

Current focus on:
- Self-coordinated assets
 - Recognizes key objectives
 - Completely autonomous
- Self-adaptive assets
 - Proactively reconfigures
 - Highly autonomous
- Condition-based maintenance
 - Predictive
 - More automation
- Preventative maintenance
 - Scheduled
 - Low automation
- Reactive maintenance
 - Fail and fix
 - No automation

None

Awareness

Sensing

None

Automation

Reconfigure Reoptimize

VALUE
What’s next…

☐ Seamless integration between model-based and data-driven methods

☐ Explainable AI (what are we learning?)

☐ Assured AI (what can we guarantee?)

☐ Design use cases