Genome Editing with Precision and Accuracy

Kris Saha, PhD
Associate Professor
Retina Research Foundation Kathryn and Latimer Murfee Chair
Dept. of Biomedical Engineering
Wisconsin Institute for Discovery
University of Wisconsin-Madison

sahalab.bme.wisc.edu
ksaha@wisc.edu
@sahakris
Gene Editing: Sequence Changes to DNA Code

Genome editing is the method to correct typographical errors.

Adapted from Matthew Porteus (Stanford), nationalacademies.org/gene-editing/Gene-Edit-Summit/Slide-Presentations/index.htm
Genome Editing Components

Challenge: Precise nanoscale delivery of all CRISPR components

DNA: 2.5 nanometer diameter

Q2: How does CRISPR work?

[YouTube Video](https://youtube.com/watch?v=O360cFGDbfE)

Max-Planck Gesellschaft
Precision & Accuracy Matter: Embryo Editing Case

Precision & Accuracy Matter: Embryo Editing Case

Before Genome Editing

Unedited CCR5

CRISPR cut site

TM1

CCR5Δ32 (HIV Protective)

IKDSHLGAGPAACHG
HLLGNPKNSAVS

Desired Goal

Human Embryo

CRISPR machinery

Ryder, *CRISPR Journal*, 2018

Normille, *Science*, 2018
Precision & Accuracy Matter: Embryo Editing Case

Before Genome Editing

Desired Goal

Ryder, CRISPR Journal, 2018

After Genome Editing
In the clinic, creating therapeutics for:

- Blood Disorders – *in vivo* and “ex vivo” editing
- Blindness
- Cancer
- Heart Disease…

Builds on momentum of approved gene therapies

Four Ways to Achieve Precision

1) DNA cutting precision
2) On-target, scarless knock-in of sequence variants
3) Transcriptional control of edited genes
4) Specificity in delivery to a specific cell or tissue

Precise Insertion of New Sequences (2)

DNA Repair Pathways After Cas9 DNA Cleavage

- Genomic DNA
 - error-prone end joining
 - homology directed repair

- ssODN
 - Precise gene editing

- Imprecise gene editing

Nucleus
Outcomes After 18 Nucleotide Insertion

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Sequence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>CACCCTGACCGACTACAAAGACGATGACGACAAGAATTCTTAC</td>
<td>Precise</td>
</tr>
<tr>
<td>HDR w/mutation</td>
<td>CACCCTGACCCTACAAAGACGATGACGACAAGAATTCTTAC</td>
<td>Imprecise</td>
</tr>
<tr>
<td>HDR w/mutation</td>
<td>CACCCTGACCGCTACAAAGACGATGACGACAAGAATTCTTAC</td>
<td>Imprecise</td>
</tr>
<tr>
<td>Incorrect HDR</td>
<td>CACCCTGACCGACTACAAAGACGACAAAGAATTCTTAC</td>
<td>Imprecise</td>
</tr>
<tr>
<td>NHEJ</td>
<td>CACCCTGACCGACTACAAAGACGACCAAGAATTCTTAC</td>
<td>Imprecise</td>
</tr>
</tbody>
</table>
CRISPR Nanoparticle for Co-delivery of Components

All necessary components (Cas9, sgRNA, single stranded oligonucleotide DNA template) for homology directed repair assembled *in vitro* and delivered as complex

Is co-delivery possible and could it make editing more precise?

Base Editing to Avoid DNA Cleavage Altogether

- Engineer Cas9 protein to avoid DNA cutting on one strand

The “base editor” variant of Cas9 for C to T change:

Komor et al. _Nature_, 2016
Precise Cellular Targeting (4)

Issues with Viral Delivery

Viral Gene Therapies, 2018:

- Difficult to control amount and targeting of Cas9 using viral vectors
- Viral vectors difficult to use and expensive
- Viral DNA could be integrated into the genome
- Potential of immune response to viral vectors
- Off-target effects due to wide distribution and expression of Cas9
- Imprecise edits when attempting scarless editing

Solution Novel nonviral strategies could be produced as off-the-shelf reagents
Redox responsive polymer composition to transflect cells with Cas9-sgRNA ribonucleoproteins

Advantages:
• No viral components

• Tunable and targetable
 • Cell/tissue targeting
 • Modify circulation
 • Evade immune response
 • Loading within biomaterials and scaffolds

• More biocompatible than commercial agents

Stable in the Bloodstream…But Degrades Within Cells

Transmission electron microscopy image of the RNP nanocapsules

Dynamic Light Scattering

Testing Gene Editing *In Vivo* Within Reporter Mice

Gene Editing Within Muscle
Decorated Nanocapsules To Target The Eye

Decorated Nanocapsules To Target The Eye

Gene Editing in vivo with Decorated Nanocapsules
Applications in the Eye: Diseases of the Retina

• Pursuing applications in the eye, brain, muscle, blood, and liver for blindness, neurodegenerative diseases, newborn disorders, cardiovascular disease and cancer

• **Off-the-shelf reagents**
 • Quality controlled, easy to manufacture
 • Biologic product without any viral components
Design Principles for Precise Genome Editing

INCCREASE

- (2) On-target, scarless knock-in of sequence variants
- (4) Progenitor cell targeting

- Genome Editor
 - TARGETED DELIVERY
 - ON-TARGET LOCUS
 - End-joining
 - Precise Insertion
 - OFF-TARGET LOCUS
 - DNA REPAIR TEMPLATE
 - Imprecise Indels
 - mRNA
 - ENDOGENOUS PROMOTER
 - PRECISE TRANSCRIPTIONAL CONTROL
 - IMPRECISE TRANSCRIPTIONAL CONTROL
 - Random integration
Postdocs/Staff
Amr Abdeen
Amritava Das
Micah Dombroe
Pawan Shahi (Pattnaik lab)
Divya Sinha (Gamm lab)
Yuyuan Wang (Gong lab)

Current Grad Students
Nicole Piscopo
Katie Mueller
Kaivalya Mogulu
Arezoo Mughavar
Kirstan Gimse

Alumni
Jared Carlson-Stevermer
Benjamin Steyer

Undergraduate students:
M. Goedland, M. Lou, R. Prestil, S. Seymour, S. Seltzer, E. Cory

UW-Madison Collaborators
M. Suzuki, T. Kamp, S. Palecek, S. Roy, D. Gamm, B. Pattnaik,
S. Gong, C. Capitini, K. Masters

sahalab.bme.wisc.edu
@sahakris
ksaha@wisc.edu

1 R35 GM119644, CBET-1350178, CBET-1645123, EEC-1648035, SCGE U01 and UG3