Neuroprosthetics & AI:

Challenges & Opportunities
Interfacing with the ultimate electrical system

- Neural recordings
- Neural stimulation

- Restore hearing
- Restore sight
- Treat neuropsych disorders
- Restore movement
Parallel revolutions in neuro hardware & software

Hardware:
Tools to record & stimulate the nervous system

- **High-density electrodes**
- **Large-scale imaging**

Jun et al., *Nature* 2017

Sofroniew et al., *eLife* 2016

Software:
Tools to analyze large data (ML/AI)

- **Feedforward neural network**
- **Recurrent neural network**

Stevenson lab, *Uconn*
Restoring movement with neuroprostheses

Translation to human clinical trials

- Hochberg et al., Nature 2012
- Collinger et al., Lancet 2012
- Raspopovic et al., Sci Trans Med 2014
- Willet et al., Nature 2021

Diverse user needs

- Causes of Paralysis:
 - Spinal Cord Injury: 1,275,000 (23%)
 - Multiple Sclerosis: 939,000 (17%)
 - Unspecified Birth Defect: 110,000 (2%)
 - Traumatic Brain Injury: 242,000 (4%)
 - Neurofibromatosis: 212,000 (4%)
 - Cerebral Palsy: 412,000 (7%)
 - Cerebral Palsy: 272,000 (5%)
 - Other: 526,000 (9%)
 - Post-Polio Syndrome: 5,596,000 (N=5,596,000)

Christopher and Dana Reeve Foundation
Huge challenges and opportunities

Neural interface:
- high throughput
- low power, noise
- stable
- minimal tissue reaction

Algorithms:
- high-performance, low-latency decoding / encoding
- Reliable across users, settings

Prosthetic devices:
- dexterous control
- adaptable for user needs
- low power, lightweight

Solutions are inter-dependent

Dr. Lan Luan
Dr. Chethan Pandarinath
Dr. Cristina Piazza
Prosthetics and AI
2022 EU-US Frontiers of Engineering Symposium

Prof. Dr. Stanisa Raspopovic
Neuroengineering Lab
DHEST, Institute of Robotics and Intelligent Systems ETH Zurich Switzerland

Bled, Slovenija
20. October 2022.
Possibilities for amputees

Replantation
- Time constraint for action
- Amputated part destroyed

Transplantation
- Life-long Immunosupression
- Psychological effect

Muscular Reinnervation
- Control & Sensing same area
- Sensory gating issue

Direct nerve interfacing
- Tyler Lab/Cleveland Medical

BIONICS

Direct muscle interfacing
- Pasquina/ Walter Reed
Sophisticated robotic prostheses are arriving.
Human-machine interfacing enables:

- Restoration of lost motor and sensory functions,
- Pain management,
- Bidirectional control of artificial limbs

Raspopovic et al., *Nature Materials* 2021
Restoring realistic leg feelings years after amputation

Petrini et al. 2019, Sci Trans Med