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Introduction and motivation 

A number of tasks which can be effortlessly achieved by humans and other animals have 

until recently remained seemingly intractable for computers. Striking examples of such 

tasks exist in the visual and auditory domains. These include recognizing the face of a 

friend in a photograph, understanding whether a new, never-seen object is a car or an 

airplane, quickly finding objects or persons of interest like one's child in a crowd, 

understanding fluent speech while also deciphering the emotional state of the speaker, or 

reading cursive handwriting. In fact, several of these tasks have become the hallmark of 

human intelligence, while other, seemingly more complex and more cognitively involved 

tasks, such as playing checkers or chess, solving differential equations, or proving 

theorems have been mastered by machines to a reasonable degree (Samuel, 1959; Newell 

& Simon, 1972). An everyday demonstration of this state of affairs is the use of simple 

image, character, or sound recognition in CAPTCHA tests (Completely Automated 

Public Turing Tests to Tell Computers and Humans Apart) used by many web sites to 

ensure that a human, rather than a software robot, is accessing the site (CAPTCHA tests, 

for example, are used by web sites providing free email accounts to registered users, and 

are a simple yet imperfect way to prevent spammers from opening thousands of email 

accounts using an automated script). 



To some extent, these machine-intractable tasks are the cause for our falling short on the 

early promises made in the 1950s by the founders of Artificial Intelligence, Computer 

Vision, and Robotics (Minsky, 1961). Although tremendous progress has been made in 

just a half century, and one is beginning to see cars that can drive on their own or robots 

that vacuum the floor without human supervision, such machines have not yet reached 

mainstream adoption and remain highly limited in their ability to interact with the real 

world. Although in the early years one could blame the poor performance of machines on 

limitations in computing resources, rapid advances in microelectronics have now 

rendered such excuses less believable. The core of the problem is not only how much 

computing cycles one may have to perform a task, but how those cycles are used, in what 

kind of algorithm and of computing paradigm. 

For biological systems, interacting with the visual world, in particular through vision, 

audition, and other senses, is key to survival. Essential tasks like locating and identifying 

potential prey, predators, or mates must be performed quickly and reliably if an animal is 

to stay alive.  Taking inspiration from nature, recent work in computational neuroscience 

has hence started to devise a new breed of algorithms, which can be more flexible, robust, 

and adaptive when confronted with the complexities of the real world. I here focus on 

describing recent progress with a few simple examples of such algorithms, concerned 

with directing attention towards interesting locations in a visual scene, so as to 

concentrate the deployment of computing resources primarily onto these locations. 

Modeling visual attention 

Positively identifying any and all interesting targets in one's visual field has prohibitive 

computational complexity, making it a daunting task even for the most sophisticated 



biological brains (Tsotsos, 1991). One solution, adopted by primates and many other 

animals, is to break down the visual analysis of the entire field of view into smaller 

regions, each of which is easier to analyze and can be processed in turn. This serialization 

of visual scene analysis is operationalized through mechanisms of visual attention: A 

common (athough somewhat inaccurate) metaphor for attention is that of a virtual 

''spotlight,'' shifting towards and highlighting different sub-regions of the visual world, so 

that one region at a time can be subjected to more detailed visual analysis (Treisman & 

Gelade, 1980; Crick, 1984; Weichselgartner & Sperling, 1987). The central problem in 

attention research then becomes how to best direct this spotlight towards the most 

interesting and behaviorally relevant visual locations.  Simple strategies, like constantly 

scanning the visual field from left to right and from top to bottom, like many computer 

algorithms do, may be too slow for situations where survival depends on reacting 

quickly.  Recent progress in computational neuroscience has proposed a number of new 

biologically-inspired algorithms which implement more efficient strategies. These 

algorithms usually distinguish between a so-called ''bottom-up'' drive of attention towards 

conspicuous or ''salient'' locations in the visual field, and a volitional and task-dependent 

so-called ''top-down'' drive of attention toward behaviorally relevant scene elements 

(Desimone & Duncan, 1995; Itti & Koch, 2001). Simple examples of bottom-up salient 

and top-down relevant items are shown in Figure 1. 



           

Figure 1: (left) Example where one item (a red and roughly horizontal bar) in an array of 

items is highly salient and immediately and effortlessly grabs visual attention attention in 

a bottom-up, image-driven manner. (right) Example where a similar item (a red and 

roughly vertical bar) is not salient but may be behaviorally relevant if your task is to find 

it as quickly as possible; top-down, volition-driven mechanisms, must be deployed to 

initiate a search for the item. (Also see Treisman & Gelade, 1980). 

Koch and Ullman (1985) introduced the idea of a saliency map to accomplish 

preattentive selection in the primate brain. This is an explicit two-dimensional map that 

encodes the saliency of objects in the visual environment. Competition among neurons in 

this map gives rise to a single winning location that corresponds to the most salient 

object, which constitutes the next target. If this location is subsequently inhibited, the 

system automatically shifts to the next most salient location, endowing the search process 

with internal dynamics. 

Later research has further elucidated the basic principles behind computing salience 

(Figure 2). One important principle is the detection of locations whose local visual 

statistics significantly differ from the surrounding image statistics, along some dimension 

or combination of dimensions which are currently relevant to the subjective observer (Itti 

et al., 1998; Itti & Koch, 2001). This significant difference could be in a number of 



simple visual feature dimensions which are believed to be represented in the early stages 

of cortical visual processing: color, edge orientation, luminance, or motion direction 

(Treisman & Gelade, 1980; Itti & Koch, 2001). Wolfe and Horowith (2004) provide a 

very nice review of which elementary visual features may strongly contribute to visual 

salience and guide visual search. 

Two mathematical constructs can be derived from electrophysiological recordings in 

living brains, which shed light onto how this detection of statistical odd-man-out may be 

carried out. First, early visual neurons often have center-surround receptive field 

structures, by which the neuron's view of the world consists of two antagonistic sub-

regions of the visual field, a small central region which drives the neuron in one direction 

(e.g., excites the neuron when a bright pattern is presented) and a larger, concentric 

surround region which drives the neuron in the opposite direction (e.g., inhibits the 

neuron when a bright pattern is presented; Kuffler, 1953). In later processing stages, this 

simple concentric center-surround receptive field structure is replaced by more complex 

types of differential operators, such as Gabor receptive fields sensitive to the presence of 

oriented line segments (Hubel & Wiesel, 1962). In addition, more recent research has 

unraveled how neurons with similar stimulus preferences but sensitive to different 

locations in the visual field may interact. In particular, neurons with sensitivities to 

similar patterns tend to inhibit each other, a phenomenon known as non-classical 

surround inhibition (Allman et al., 1985; Cannon & Fullenkamp, 1991; Sillito et al., 

1995). Taken together, these basic principles suggest ways by which detecting an odd-

man-out, or significantly different item in a display, can be achieved in a very economical 

(in terms of neural hardware) yet robust manner. 



 

 

Figure 2: Architecture for computing 

saliency and directing attention towards 

conspicuous locations in a scene. Incoming 

visual input (top) is processes at several 

spatial scales along a number of basic 

feature dimensions, including color, 

luminance intensity, and local edge 

orientation. Center-surround operations as 

well as non-classical surround inhibition 

within each resulting ''feature map'' 

enhance the neural representation of 

locations which significantly stand out 

from their neighbors. All feature maps feed 

into a single saliency map which 

topographically represents salience 

irrespectively of features. Finally, attention 

is first directed to the most salient location 

in the image, and subsequently to less 

salient locations. 

 

Many computational models of human visual search have embraced the idea of a saliency 

map under different guises (Treisman, 1988; Wolfe, 1994; Niebur & Koch, 1996; Itti & 



Koch, 2000).  The appeal of an explicit saliency map is the relatively straightforward 

manner in which it allows the input from multiple, quasi-independent feature maps to be 

combined and to give rise to a single output: The next location to be attended.  Related 

formulations of this basic principle have been expressed in slightly different terms, 

including defining salient locations as those which contain spatial outliers (Rosenholtz, 

1999), which may be more informative in Shannon's sense (Bruce & Tsotsos, 2006), or, 

in a more general formulation, which may be more surprising in a Bayesian sense (Itti & 

Baldi, 2006). Electrophysiological evidence points to the existence of several neuronal 

maps, in the pulvinar, the superior colliculus and the intraparietal sulcus, which appear to 

specifically encode for the saliency of a visual stimulus (Robinson & Petersen, 1992; 

Gottlieb et al., 1998; Colby & Goldberg, 1999). 

Fully implemented computational models of attention, although relatively recent, have 

spawned a number of exciting new technological applications. These include, among 

many others: Automatic target detection (e.g., finding traffic signs along the road or 

military vehicles in a savanna; Itti & Koch, 2000); Robotics (using salient objects in the 

environment as navigation landmarks; Frintrop et al., 2006; Siagian & Itti, 2007); Image 

and video compression (e.g., giving higher quality to salient objects at the expense of 

degrading background clutter; Osberger & Maeder, 1998; Itti, 2004); Automatic 

cropping/centering of images for display on small portable screens (Le Meur et al., 

2006); Medical image processing (e.g., finding tumors in mammograms; Hong & Brady, 

2003); and many more. 

From attention to visual scene understanding 



How can cognitive control of attention be integrated to the simple framework described 

so far? One hypothesis is that another map exists in the brain, which encodes for top-

down relevance of scene locations (a so-called Task-Relevance Map or TRM; 

Navalpakkam & Itti, 2005). In the TRM, a highlighted location might have a particular 

relevance because, for example, it is the estimated target of a flying object, it is the next 

logical place to look at given a sequence of action, recognition and reasoning steps, like 

in a puzzle video game, or one just guesses that there might be something worth looking 

at there. Clearly, building computational models in which a TRM is populated with 

sensible information is a very difficult problem, tantamount to solving most of the 

problems in vision and visual scene understanding. 

 

Recent work has demonstrated how one can implement quite simple algorithms which 

deliver highly simplified but useful task-relevance maps. In particular, Peters & Itti 

(2007; Figure 3) recently proposed a model of spatial attention that (1) can be applied to 

arbitrary static and dynamic image sequences with interactive tasks and (2) combines a 

general computational implementation of both bottom-up (BU) saliency and dynamic 

top-down (TD) task relevance (Figure 5). The novelty lies in the combination of these 

elements and in the fully automated nature of the model. The BU component computes a 

saliency map from 12 low-level multi-scale visual features, similar to described in the 

previous section.  The TD component computes a low-level signature of the entire image 

(the so-called ''gist'' of the scene; Torralba, 2003; Peters & Itti, 2007), and learns to 

associate different classes of signatures with the different gaze patterns recorded from 

human subjects performing a task of interest. It is important to note that while we call this 



component top-down, that does not necessarily imply that it is high-level --- in fact, while 

the learning phase certainly uses high-level information about the scenes, that becomes 

summarized into the learned associations between scene signatures and expected 

behavior in the form of TD gaze-position maps. 

 

Figure 3: Schematic illustration of our model for learning task-dependent, top-down 

influences on eye position. First, in (a) the training phase, we compile a training set 

containing feature vectors and eye positions corresponding to individual frames from 

several video game clips which were recorded while observers interactively played the 

games. The feature vectors may be derived from either: the Fourier transform of the 

image luminance; or dyadic pyramids for luminance, color, and orientation; or as a 

control condition, a random distribution. The training set is then passed to a machine 

learning algorithm to learn a mapping between feature vectors and eye positions. Then, 

in (b) the testing phase, we use a different video game clip to test the model. Frames from 

the test clip are passed in parallel to a bottom-up saliency model, as well as to the top-

down feature extractor, which generates a feature vector that is used to generate a top-



down eye position prediction map. Finally, the bottom-up and top-down prediction maps 

can be combined via point-wise multiplication, and the individual and combined maps 

can be compared against the actual observed eye position. 

We measured (Peters & Itti, 2007) the ability of this model to predict the eye movements 

of people playing contemporary video games (Figure 4). We found that the TD model 

alone predicts where humans look about twice as well as does the BU model alone; in 

addition, a combined BU*TD model performs significantly better than either individual 

component.  Qualitatively, the combined model predicts some easy-to-describe but hard-

to-compute aspects of attentional selection, such as shifting attention leftward when 

approaching a left turn along a racing track. Thus, our study demonstrates the advantages 

of integrating bottom-up factors derived from a saliency map and top-down factors 

learned from image and task contexts in predicting where humans look while performing 

complex visually-guided behavior. In continuing work we are exploring ways of 

introducing additional domain knowledge into the top-down component of our attentional 

system. 



 

Figure 4: Combined bottom-up + top-down model and comparison with human eye 

movements (Peters & Itti, 2007). While a subject was playing this jet-ski racing game 

(upper-left), his gaze was recorded (large orange circle in all four quadrants). 

Simultaneously, the top-down map (upper-right) was computed from previously learned 

associations between scene gist and human gaze (location of maximum top-down activity 

indicated by small red circle). The bottom-up saliency map was also computed from the 

video input (lower-left, maximum at small blue circle). Finally, both maps where 

combined, here by taking a pointwise product (lower-right, maximum at small purple 



circle). This figure exemplifies a situation where top-down dominates gaze allocation 

(several objects in the scene are more bottom-up salient than the one being looked at). 

Discussion and conclusions 

Visual processing of complex natural environments requires animals to combine, in a 

highly dynamic and adaptive manner, sensory signals that originate from the environment 

(bottom-up) with behavioral goals and priorities dictated by the task at hand (top-down). 

In the visual domain, bottom-up and top-down guidance of attention towards salient or 

behaviorally relevant targets have both been studied and modeled extensively, a well as, 

more recently, the interaction between bottom-up and top-down control of attention. In 

recent years, thus, a number of neurally-inspired computational models have emerged 

which demonstrate unparalleled performance, flexibility, and adaptability in coping with 

real-world inputs. In the visual domain, in particular, such models are achieving great 

strides in tasks including focusing attention onto the most important locations in a scene, 

recognizing attended objects, computing contextual information in the form of the ''gist'' 

of the scene, and planning/executing visually-guided motor actions, among many other 

functions. 

Together, these models present great promise for future integration with more 

conventional Artificial Intelligence techniques: Symbolic models from artificial 

intelligence have reached significant maturity in their cognitive reasoning and top-down 

abilities, but the worlds in which they can operate have been necessarily simplified (e.g., 

a chess board, a virtual maze). Very exciting opportunities exist at present to attempt to 

bridge the gap between the two disciplines of neural modeling and artificial intelligence. 
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