Design of Forward Collision Warning System using Relative Acceleration Estimation and Multi-Object Tracking

Bo-Chiuan Chen
Associate Professor, Department of Vehicle Engineering
Director, Vehicle Technology Research Center
National Taipei University of Technology, Taipei, Taiwan
Self Introduction

- **Education**
 - Ph.D., Mechanical Engineering, U. of Michigan
 - M.S., Electrical Engineering, U. Michigan
 - M.S., Mechanical Engineering, U. Michigan
 - B.S., Naval Architecture and Ocean Engineering, NTU

- **Experience**
 - Assistant Professor, Vehicle Eng. Dept., NTUT
 - Strategy and Software Engineer, Powertrain Control Dept., Visteon, USA
 - Research Assistant, Automotive Research Center, U. of Michigan

- **Awards**
 - Outstanding Young Engineer Award, SAE Taipei Section, 2008.
 - Top 5 in Super Mileage Competition, SAE Taipei Section, 2004-2010.

- **Research Areas**
 - Active Safety, Vehicle Dynamics and Control, Hybrid Electric Vehicle, Engine Control, Optimum Control
Research Areas

- **Active Safety**
 - Electronic Stability Control
 - Rollover Prevention
 - **Forward Collision Warning**
 - Lane Departure Warning
 - Side Collision Warning
 - Auto Parking

- **Vehicle Dynamic and Control**
 - Light Weight Electric Vehicle
 - Electric Differential
 - Electric Power Steering
 - ABS/TCS
 - Semi-active Suspension

- **Hybrid Electric Vehicle**
 - Hybrid Electric Scooter
 - Power Management System

- **Engine Control**
 - Idle Speed Control
 - Engine Management System
Statistics

- In U.S., the percentage of rear end collision in all collisions was about 31.5% in 2009.

Crashes by First Harmful Event, Manner of Collision, and Crash Severity

<table>
<thead>
<tr>
<th>First Harmful Event</th>
<th>Crash Severity</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fatal Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Collision with Motor Vehicle</td>
<td>Number</td>
<td>Percent</td>
</tr>
<tr>
<td>in Transport</td>
<td>5,637</td>
<td>18.3</td>
</tr>
<tr>
<td>Angle</td>
<td>1,674</td>
<td>5.4</td>
</tr>
<tr>
<td>Sideswipe</td>
<td>757</td>
<td>2.5</td>
</tr>
<tr>
<td>Head On</td>
<td>3,007</td>
<td>9.8</td>
</tr>
<tr>
<td>Other/Unknown</td>
<td>115</td>
<td>0.4</td>
</tr>
<tr>
<td>Subtotal</td>
<td>11,190</td>
<td>36.3</td>
</tr>
</tbody>
</table>

Source: Traffic Safety Facts 2009
Human Error

- 80% of drivers attempted no action in rear end collisions.

Table 1. Definition and Relative Frequency of Top Five Rear-End Precrash Scenarios (Based on 1992-1996 GES) [2]

<table>
<thead>
<tr>
<th>No.</th>
<th>Scenario Definition</th>
<th>Relative Frequency, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Both following and lead vehicles are traveling at constant speed on a straight road and lead vehicle then decelerates.</td>
<td>37.0</td>
</tr>
<tr>
<td>2</td>
<td>Following vehicle is traveling at constant speed on a straight road and encounters a lead vehicle stopped in traffic lane ahead.</td>
<td>30.2</td>
</tr>
<tr>
<td>3</td>
<td>Following vehicle is traveling at constant speed on a straight road and encounters a lead vehicle traveling at a constant, lower speed ahead.</td>
<td>14.1</td>
</tr>
<tr>
<td>4</td>
<td>Both following and lead vehicles are decelerating on a straight road and lead vehicle then decelerates at a higher rate.</td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td>Following vehicle is traveling at constant speed on a curved road and encounters a lead vehicle stopped in traffic lane ahead.</td>
<td>3.0</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>88.8</td>
</tr>
</tbody>
</table>

*: Relative frequency represents the average value from 1992 through 1996.

Source: SAE Paper 1999-01-0817

Table 2. Percent Distribution of Attempted Avoidance Maneuvers (Based on 1996 GES)

<table>
<thead>
<tr>
<th>Action Attempted</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Action</td>
<td>81.4</td>
<td>78.4</td>
<td>83.8</td>
<td>68.6</td>
<td>86.2</td>
</tr>
<tr>
<td>Braked</td>
<td>12.2</td>
<td>15.5</td>
<td>8.1</td>
<td>25.7</td>
<td>11.1</td>
</tr>
<tr>
<td>Steered</td>
<td>1.1</td>
<td>2.2</td>
<td>1.7</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Braked & Steered</td>
<td>0.5</td>
<td>1.0</td>
<td>0.4</td>
<td>1.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Accelerated</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other/No Details</td>
<td>0.3</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>4.5</td>
<td>2.8</td>
<td>5.6</td>
<td>2.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Sum</td>
<td>100.1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: AVEC 9437953
Existing Technologies

Forward Collision Warning System (FCWS)
Object Detection Systems

• Infrared Laser
 – Transmit energy in the THz range (1 THz = 10^{12} Hz).
 – Superior angular resolution.
 – Limited performance due to atmospheric effects, such as fog and rain.
 – Does not perform well on wet objects or targets whose surface roughness is the order of the laser wavelength (10.6 microns).

• Microwave/Millimeter wave radar
 – Transmit energy in the tens of GHz range (1 GHz = 10^9 Hz)
 – Better adverse weather penetration than active laser systems.

• Camera
 – Usable distance accuracy for short-range detection (less than 55 m)
 – Poor accuracy for long-range detection due to the pixel resolution
Forward Collision Warning System

- Autonomous Solutions:
 - Identify valid target and measure range, range rate, and vehicle speed (10Hz or faster).
 - Vehicle path prediction
 - Issue warning based on
 - Time-to-Collision
 \[TTC = \frac{R}{\dot{R}} \]
 - Time-headway (time gap)
 \[THW = \frac{R}{V_{\text{host}}} \]
 - Threshold distance
 From vehicle speed, road friction, and human delays such as “blank time” and “judgment time,” a “safe following distance” \(d \) can be constructed.

Source: SAE 98PC-417
Relative Acceleration Estimation

• Lee and Peng (2005) mentioned that the leading vehicle acceleration is a critical step for developing practical collision warning/avoidance systems.

• Good estimation of relative acceleration is the key to reduce the false alarm of FCWS.
 – Dagan et al. (2004) calculated TTC from the momentary TTC defined by Hayward and its derivative, which is closely related to relative acceleration and can be computed by the scale change in the image.
 – Araki et al. (1996) applied a 3-state Kalman filter to estimate relative velocity and acceleration.

\[
\hat{x}(k+1) = A\hat{x}(k) + L(y(k) - C\hat{x}(k)), \quad \hat{x}(k) = \begin{bmatrix} \hat{R} & \hat{V} & \hat{A} \end{bmatrix}^T
\]

\[
A = \begin{bmatrix} 1 & T & 0.5T^2 \\ 0 & 1 & T \\ 0 & 0 & 1 \end{bmatrix}, \quad G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad C = [1 \quad 0 \quad 0]
\]
Moon et al. (2009) proposed **primary target selection**

- A yaw-rate based subject vehicle’s lane detection, a motion based analysis, and an integration process.
- Primary target might be changed quite often during transient yaw motion.
Proposed Approach

- Recursive Least Squares

\[
\hat{R}(k) = a_R(k)t^2 + b_R(k)t + c_R(k) = \phi^T(k)\hat{\theta}_R(k)
\]

\[
\hat{D}(k) = a_D(k)t^2 + b_D(k)t + c_D(k) = \phi^T(k)\hat{\theta}_D(k)
\]

\[
\hat{\theta}_R = \begin{bmatrix} a_R(k) & b_R(k) & c_R(k) \end{bmatrix}^T
\]

\[
\hat{\theta}_D = \begin{bmatrix} a_D(k) & b_D(k) & c_D(k) \end{bmatrix}^T
\]

\[
\phi(k) = \begin{bmatrix} t^2 & t & 1 \end{bmatrix}^T, \quad t = kT
\]

Overflow when \(t \) is large

Reset to zero during safe maneuvers

\[
K(k) = P(k-1)\phi(k)(\lambda I + \phi^T(k)P(k-1)\phi(k))^{-1}
\]

\[
\hat{\theta}(k) = \hat{\theta}(k-1) + K(k) \left(y(k) - \phi^T(k)\hat{\theta}(k-1) \right)
\]

\[
P(k) = (I - K(k)\phi^T(k))P(k-1)/\lambda
\]

Forward Collision Warning System (FCWS)
Proposed Approach

- Variable forgetting factor
 - Large forgetting factor is suitable for small relative acceleration. However, the estimation performance deteriorates with large relative accelerations.
 - Small forgetting factor is suitable for large relative accelerations. However, it might produce noisier estimations for small relative acceleration.
 - Adjust the forgetting factor according to the estimated relative acceleration, i.e. variable forgetting factor, might be a good solution.

\[
\lambda_R = d_R - m_R |\dot{\hat{A}}| \\
\lambda_D = d_D - m_D |\dot{\alpha}|
\]

\[
\hat{R}(k) = \hat{a}_R(k) t^2 + \hat{b}_R(k) t + \hat{c}_R(k) \\
\hat{V}(k) = 2\hat{a}_R(k) t + \hat{b}_R \\
\hat{A}(k) = 2\hat{a}_R(k)
\]

\[
TTC(k) = \frac{-\hat{V}(k) \pm \sqrt{\hat{V}^2(k) - 2\hat{A}(k) \hat{R}(k)}}{\hat{A}(k)}
\]
Optimization

- **Kalman Smoothing**
 - the *forward* filtered data contains undesirable time delays,
 \[
 \dot{x}_{KF}(t) = A_f x_{KF}(t) + Gw(t)
 \]
 \[
 y(t) = Cx_{KF}(t) + Nv(t)
 \]
 \[
 x_{KF}(t) = [V_F(t) \quad a_F(t) \quad R(t) \quad V_L(t) \quad a_L(t)]^T
 \]
 \[
 A_f = \begin{bmatrix}
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 -1 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0
 \end{bmatrix}, \quad G = \begin{bmatrix}
 0 & 0 \\
 0 & 1 \\
 0 & 0 \\
 0 & 0 \\
 0 & 1
 \end{bmatrix}, \quad C = \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0
 \end{bmatrix}, \quad N = \begin{bmatrix}
 1 & 0 \\
 0 & 1
 \end{bmatrix}
 \]
 - a *backward* Kalman filter is constructed to cancel its effect
 \[
 \hat{z}(k+1) = A_{db} \hat{z}(k) + L_s [y(k) - C\hat{z}(k)]
 \]
 \[
 A_{db} = [A_{df}^T A_{df}]^{-1} A_{df}^T
 \]
 - The averaged data is then used as the *ground truth*.
 - The same smoothing procedure is applied to the *relative orientation*.
Proposed Approach

- Multi-object Tracking

Possible collision

\[
\phi = \tan^{-1}\left(\hat{R}\hat{\omega}, \hat{V} \right) + \hat{D}
\]

Safe

If \(\text{TTC} < \text{TTC}_{th} \)

If \(\phi_{\text{min}} \leq \phi \leq \phi_{\text{max}} \) and \(\text{count} \geq \text{count}_{th} \)

Possible collision, warning on

Else

Safe, warning off

Else

Safe, warning off

End

\[
\text{TTC}_{th} = 4 \text{ sec} \\
\text{count}_{th} = 2
\]

\[
\text{TTC}_{th} = 3.5 \text{ sec} \\
\text{count}_{th} = 3
\]

\[
\rho = \frac{v}{r}
\]

Forward Collision Warning System (FCWS)
Experimental Setup

- IMU
- VBOX
- Mototron
- Steering angle sensor
- CAN analyzer
- Data acquisition
- Data logging
- USB camera
- Analog
- CAN Bus
- USB

ibeo LUX technical data:

- Working area with 4 layers: 85°
- Working area expansion with 2 layers: 100°
- Range: 0.3 to 200m
- Angular resolution: 0.125° to 1°
- Vertical aperture angle: 3.2°
- Scanning layers: 4 vertical
- Echos per measurement: 3
- Scanning frequency: 12.5 Hz / (25 Hz)
- Wavelength: 905nm
- Dimensions (HxWxD): 85 x 128 x 93mm
- Temperature range: -40°C to +85°C
- Eye-safety: Laser class 1
- Weight: Approx. 1kg
- Interfaces: 100MBit Ethernet / CAN 2.0 B
- Voltage: 9-27V DC max. 10W, average 6W
- Distance resolution: 4cm

Forward Collision Warning System (FCWS)
ISO 15623

Longitudinal target discrimination ability test

Straight road lateral target discrimination ability test

Curved test track and target discrimination ability test
ISO Test -1

Forward Collision Warning System (FCWS)
ISO Test -1

Forward Collision Warning System (FCWS)
ISO Test - 2

Forward Collision Warning System (FCWS)
ISO Test - 2

Forward Collision Warning System (FCWS)
ISO Test - 3
ISO Test - 3

Relative distance (m)

Relative velocity (m/s)

Relative acceleration (m/s²)

Relative velocity vector (main lane)

Relative velocity vector (adjacent lane)

TTC (s)

Forward Collision Warning System (FCWS)
Expressway Tests

Lane Change

Merging Traffic

Cut-in

Aggressive Lane Change

Forward Collision Warning System (FCWS)
Conclusions

• **Relative acceleration** is considered to improve the accuracy of TTC estimation.
 - Recursive least square technique with variable forgetting factor is used to estimate coefficients of two second order polynomials for the relative distance and relative orientation, respectively.

• **The region of interest for FCWS is extended from the main lane to adjacent lanes.**
 - According to the measured relative distance and relative orientation, a multi-object tracking algorithm is developed in this research.
 - When the TTC is below the threshold value, relative velocity vector is used to determine if there is an impending threat for collision.

• **Experimental results show that the proposed algorithm**
 - can pass all 3 tests of ISO 15623
 - and issue valid warnings to the driver without false alarms for the expressway tests.
Future Works

- Automatic evasive maneuver for collision avoidance

Source: Continental Emergency Steer Assist 2010
Q & A

Thank you for your attention.