Engineering Biomimetic Materials by Harnessing Mechanical Instability of High-Aspect-Ratio Polymer Pillar Arrays

Shu Yang
Materials Science and Engineering
Chemical and Biomolecular Engineering
University of Pennsylvania

Funding: National Science Foundation (CAREER, MRSEC, CMMI, EFRI)
Various Instabilities in Soft Materials

Dewetting
Herminghaus et al.

Wrinkling
Lin, et al

Spinodal instability
Steiner, et al.

Clustering
Zhang, et al.

E-induced
Chu, et al.

Creasing
Tanaka, et al.

Capillary instability
Alvine, et al.

Rayleigh-Plateau instability
Utada, Weitz
Bottom-up Complex Patterns in Nature

Phyllotactic growth of plants

Sea shells

Structural colors

Instabilities, packing constraints, and simple geometries drive the formation of delicate, detailed, and beautiful patterns

Shu Yang
Harnessing Instabilities to Create Ordered Structures

- **Wrinkling of bilayer films**
- **Buckling of hydrogel films with crosslinking gradient**
- **Pattern transformation**

Dry

Swollen

Glassy (Dry)

Elastic solid

Viscoelastic liquid-like

Dry

Swell

W

P

D

Shu Yang
Pillar Structures in Nature

Lotus leaves

Red blood cells

Circulating tumor cell

Intestinal microvilli

Gecko toe pads

Autumn et al., *Nature*, 2000

Shu Yang

Burdock Seeds

Harnessing Mechanical Instability of High-Aspect-Ratio Polymer Pillar Arrays

Advantages

- Mechanically compliant
- Large surface area
- True surface topography

Shu Yang
Fabrication of High-Aspect-Ratio Polymer Pillars Arrays

Replica molding

PDMS precursor

PDMS replica

Liquid precursor

Polymer Nanopillars

Shu Yang

Nanoimprint Lithography

Capillary force lithography (CFL)

Y. Zhang, et al. Langmuir, 2006; Small 2010;
High-Aspect-ratio (HAR) Micropillar Arrays

However,

polymer pillars are susceptible to surface forces

- Adhesive force
- Capillary force

Shu Yang
Stability of Polymer Pillars In Air

Adhesion Energy vs. Bending Energy

PDMS, E=1.7 MPa

PU, E=183 MPa

Ground collapse

Lateral collapse

\[E_b^* = \frac{11^{\frac{3}{5}}}{2^{\frac{2}{5}}} \frac{3^{\frac{1}{5}}}{4^{\frac{3}{5}}} (1-v^2)^{\frac{4}{5}} \frac{1}{h^2 W} \frac{(\pi d)^2}{5} \]

\[E_L^* = \frac{5.32 \times h^3 \gamma_s (1-v^2)^{\frac{1}{4}}}{d^2 w^2} \]

Shu Yang
Highly Stable HAR Epoxy Pillar Arrays: $E = 3\text{GPa} > E_{\text{crit}}$

<table>
<thead>
<tr>
<th>Shape</th>
<th>Conical</th>
<th>Cylindrical</th>
<th>Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$7 \mu m$</td>
<td>$9 \mu m$</td>
<td>$9 \mu m$</td>
</tr>
<tr>
<td>d</td>
<td>$300-680 \text{nm}$</td>
<td>500nm</td>
<td>$1 \mu m$</td>
</tr>
<tr>
<td>w</td>
<td>$1.32 \mu m$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Si Master

PDMS Membrane

Epoxy Nanopillars

Shu Yang
(Non)wettability on Nanoggrass

Krupenkin et al. \textit{Langmuir} 2004, 20, 3824

Shu Yang
Dry Adhesion in Gecko Toe Pads

6 million setae per gecko
100-1000 spatulae per seta (10^9 per gecko)

Contribution of van der Waals Force

$$200 \, \mu N \times 14400 \times 100 \times 4 = 1150 \, N \, or \, 115 \, kg$$

Single seta force
Setal Density Pad # of
Area Feet

Need only 0.04% of maximal force to hold body weight
Directional Tilt of Fibrils (Setae) Plays a Crucial Role in Rapid Switching bet Attached and Detached States

- Shearing along the backward (releasing) direction opens the cracks leading to low adhesion and friction;
- Shearing along the forward (gripping) direction gives rise to high adhesion and friction

Shu Yang
Fabrication of Slanted Pillars

Anisotropic adhesion and wetting

Hierarchical Slanted hairs

transport of a large-area LCD glass

The glass is 0.9 mm thick, 47.5 x 37.5 cm² in area, and 470 g in weight.

• Increases compliance of the fibrillar structures
 → Better contact between substrate and nanohairs

Shu Yang
Stability of Microstructures During Solvent Drying

Two scenarios of pattern collapse

(a) Capillary force

(b) Plasticization

Capillary Forces on HAR Microstructures

Laplace pressure

\[P_1 - P_2 = \frac{\gamma}{R} \]

Stoykovich et al., *Adv. Mater.*, 2003

Buckling

\[F = 2\pi r \gamma \cos \theta \]

Cohen et al., *PNAS*, 2003

Coalescence

Bico et al., *Nature*, 2004

Py et al., *EPL*, 2005

Capillary meniscus interaction force due to deformation of flat liquid surface

Chandra et al., *Langmuir*, 2009
Replica Molding of PHEMA based Hydrogel Micropillar Arrays

HEMA
Glassy in air
Swellable in water

MMA
Co-monomer

NIPA
Co-monomer
Temp. sensitive

EGDMA
Monomer or crosslinker
PHEMA-co-PMMA Hydrogel Pillar Arrays
Manipulating Collapse Behaviors after Drying from Water

Chandra et al., ACS Appl. Mater. Interface, 2009, 1 (8), 1698
Collapsed Micropillar Arrays As Ultrathin Whitening Layers

Uncoated paper: whiteness ~ 65; thickness ~ 150 μm

CIE lightness index (diffuse reflectance):
0 = black; 100 = perfect white

Vakusic et al., *Science*, 2007
- Whiteness of 60
- Brightness of 65,
- Filaments diameters, ~200-250 nm,
- Scale thickness of 5 μm
Applications of High-Aspect-Ration (HAR) Pillars

Color Display

Wetting
Krupenkin et al., *Langmuir*, 2004

Cellular Sensing
Jones et al.

Gecko-inspired Adhesives
Autumn, Fearing, et al.
http://robotics.eecs.berkeley.edu/~ronf/Gecko/interface08.html
What Else Can We Do with Pillars?

Entrapping particles

Shu Yang

Ying Zhang
Summary

• High-aspect-ratio (HAR) pillars offer an interesting example to study and harness mechanical instability

• Fabrication of various pillar arrays and study of their deformation and clustering in air and after drying from water

• Exemplary applications of instability of HAR pillars
 • Dry adhesion & non-wetting
 • Ultrathin whiteness
 • Cell sensing

• Future prospects of HAR pillars
 • Making them responsive, hybrid
 • As templates to assist assembly (epitaxial, phyllotactic...)
 • Exploiting applications in energy harvesting and storage, architecture, biotechnology...