Transition of Robot Technologies from Academia to Industry

Matthew Williamson
Director, Technology Development
Heartland Robotics
Introduction

- Technology transfer
 - HP
 - Virus throttling
 - Sana Security
 - Bio inspired intrusion detection
 - Behavior based anti-malware
 - Heartland Robotics
 - Series elastic actuators
Transitioning (robot) research

• Academia -> industry
 – Its hard
 – Not as much transfer as we might hope

• We would like to
 – Understand why
 – Figure out how to get more transfer

• In this talk
 – Case study of Series Elastic Actuator
 – Model of transfer
 – Main issue is structural
 – Suggestions to improve transfer
Series Elastic Actuator

- SEA invented at MIT in 1993
 - Pratt and Williamson (1995)
- Inexpensive way to get good force control
 - Make robots that are compliant, good at tasks, safer around humans, good in unstructured environments etc.
- Spring in series with gearbox
- Turn force control problem into position control
- Spring filters gearbox nonlinearities, gives smooth output torque
- Gain in compliance, sacrifice bandwidth
1993: SEA Invented
1995: First Prototype
1996: First SEA Robots
1997: Patent issued
2000: First SEA company (Yobotics)
1997: Patent issued
2007: More SEA Companies, iWalk, MekaBot
2008: First commercial arms with SEAs
2010: SEA Robot in space
2013: Patent expires

- Increasing use of SEA robots in academia
 - MIT, CMU, Georgia Tech, etc.

- Increasing use of SEA in products
Model of transfer

Technology

- Works in production
- Right cost

Market

- Market Opportunity
- Timing

Intangible

- People
- Luck

Successful Paper

$ $$

Successful Company

Market Success

Patent
Technical challenges

• Turning prototype into a product
• Often a lot of work, e.g. SEA
 – 1.5 man years to prototype
 – Heartland >> 24 man years
• Security software
 – 3 man years to prototype
 – Team of 25 engineers, 6 testers for 2 years to product
• Why does this take such a lot of work?
Product quality

- Attention to detail
 - Manufacturability
 - Cost targets
 - Performance
 - Reliability/fatigue
 - Failure modes
 - Analysis
Technical challenges - testing

• Robotics
 – Durability testing
 • Long term testing
 • Elevated temperature
 – Units running continuously
 • Millions of cycles
• Security software
 – every build 30k automated tests
 – team of 6 working for 2 weeks on final acceptance testing
• This kind of rigor a high bar for an academic paper!
Technical implications for transfer

• Technical bar for academic publication:
 – New work
 – Math and working prototype implementation

• Technical bar for product:
 – Work, work well enough, work long enough, work cheaply enough…
 – Attention to detail
 – Testing

• Robotics add concerns of
 – Cost, manufacturability

• Academics not incented to solve bring-to-market issues
 – Lot of work, little payoff
 – In fact often would make sense to avoid those issues
 – Not seen as increasing state of the art
Market

• Most risky part
• Very hard to predict
 – Very timing dependent
• In SEA history
 – ISRobotics license
 – Yobotics
• Failed because of lack of market
• But later (2009/2010), market better
Market implications for transfer

• Fundamental disconnect:
 – Academics are about technology
 – Companies are about products
 • Largely agnostic of technology

• Mismatch

• Which ideas should academics work on?
 – Hard to tell if ideas are marketable
 – Or when ideas are marketable
 – Guidance and communication

• Need to work on further out problems
 – Take risk they will be irrelevant
Intangibles: People/luck

- People matter
- SEA taken off, largely because people who used it were entrepreneurial
 - Aaron Edsinger -> Mekabot
 - Jerry Pratt -> Yobotics
 - Hugh Herr -> iWalk
- Luck matters
 - Across all aspects
People/luck implications for transfer

- Not all academics are entrepreneurial
 - Hard to expect them to be so
 - Harder to make that a pre-requisite for choosing a research topic
- Can’t make all academics lucky!
 - But can “make own luck”!
Summary

- **Transfer**
 - Technical
 - Academic papers much lower technical bar
 - Does not make sense for academics to do more
 - Market
 - More random, hard to predict
 - Risky
 - Intangibles
 - What really works dependent on people/luck

- **It's worse than this**
 - They are all connected

- **What can be done?**
 - Funding and funding cycles
 - Industrial collaboration and sponsorship
 - Common platforms
 - Networking
Funding

- Funding for research often from governments
- Can be out of step with real issues, or random
- E.g. focus on military applications in US
 - Less focus on cost/performance tradeoffs
- There is increasing industrial participation in these
 - Good sign
 - But…
Industrial collaboration/sponsorship

- Companies funding research
- Can be effective
 - DLR and Kuka
 - ABB and Rosetta project
 - Bluefin and robot clams
- Normally only available to big companies...
- ... which tend to be more conservative
- Smaller companies, which are more innovative can’t afford this
 - Work generally derivative
Common platforms

• Many of technical risks can be reduced if work is originally done on a compatible platform
• More effective for software than hardware
• Ideas implemented on e.g. ROS are easier to pick up and use by others who use ROS

But
 – Adoption of those platforms by companies can be problematic
 • IP issues
 • Existing code base
People

• Best collaboration is people
 – Placements in academic labs
 – Internships
 – Networking
Conclusion

• Transferring academic work to industry
 – Tough, and often a long winding road
• Groups have different incentives, timelines, risks
• Structural differences means changing the kinds of things academics work on makes little sense
• Increase chances of transfer by
 – Increased communication on both sides
 – Making funding relevant
 – Use of standard platforms
 – What else?
Discussion