Challenges in disaster mitigation of large infrastructure by engineering design

Baidurya Bhattacharya
Indian Institute of Technology Kharagpur

Indo-American Frontiers of Engineering Symposium 2012
Washington DC, March 1 – 3, 2012
Outline

• Civil infrastructure systems
 – Uncertainty and reliability
 – Evolution of engineering design

• Current challenges: thinking beyond failure
 – Uncertainty analysis: **Load modeling**
 – System modeling: **Efficient simulations**
 – Risk quantification: **Acceptable risk**
The engineer’s work

- **System**
 - System properties \((A, E, \rho, L)\)
 - Input \((P)\)
 - Response \((\Delta)\)
 - System (I/O) model: \(\Delta = f(P; A, E, ...)\)
 - System capacity: \(\Delta_{\text{max}}\)

- **Failure**
 - Response exceeds capacity
 - Multiple performance requirements

- **Presence of uncertainties**
 - Model, input, properties

- **Compute probability of failure**
 - Is it acceptably low?

- **Is it economical?**

- **Done! (Good luck and take care)**

\[
\sigma = \frac{P}{A_0} \\
\epsilon = \frac{P}{A_0E} \\
\Delta = \frac{PL}{A_0E}
\]
Compute probability of failure

\[C > D : \text{Safe} \]
\[C < D : \text{Failed} \]

Limit state eqn:
\[C - D = 0 \]

Failure probability:
\[P_f = P[C - D < 0] \]

Reliability:
\[\text{Rel} = 1 - P_f \]

More generally:
\[\text{Rel}(t, \Omega) = P[C(\tau, x) > D(\tau, x), \forall \tau \in (0, t), \forall x \in \Omega] \]
A complex infrastructure: global response

Response of primary system
A complex infrastructure: local response

Response of secondary systems
A complex infrastructure: local response

Response of secondary systems

<table>
<thead>
<tr>
<th>FEMA 350</th>
<th>Performance Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Immediate Occupancy</td>
</tr>
<tr>
<td>Demand level</td>
<td>500 yr return period earthquake</td>
</tr>
<tr>
<td>Non structural requirements</td>
<td>Equipment and contents should be OK, may not work due to lack of power</td>
</tr>
<tr>
<td>Structural requirements</td>
<td>Strength and stiffness must be retained. Minor cracking allowed. Elevator and fire protection systems must be OK.</td>
</tr>
</tbody>
</table>
Evolution of engineering design

Code of Hammurabi (Babylon, 1772 BC):

Building construction - 6 clauses, 193 words to define payment and liability

Clause: 229. If a builder build a house for some one, and does not construct it properly, and the house which he built fall in and kill its owner, then that builder shall be put to death.

Indian Civil Nuclear Liability Act (2010)

• 14000 words, 49 major clauses
• Grades of damage (7 types)
• Determination of responsible party
• Liability is “no fault” type
 Limited to Rs 15 Bn (USD 300m)
 Depends on size and cause of event
 Arbitration by Claims Commissioner
• Penalty for non-compliance or obstruction
 Fine
 Imprisonment (up to 5 yrs)
Evolution of engineering design

• Modern infrastructure systems
 – Getting bigger and more complex
 – Interaction between structural non-structural and human elements
 – Diffused responsibility – owners vs. operators vs. stakeholders
 – Large failure consequences
 – New challenges
The engineer’s challenges

- Classical approach
 - System will be serviceable
 - System will be fail-safe, damage-tolerant etc.

- New paradigm: thinking beyond failure
 - Damage/failure can happen
 - Revised expectations & priorities?
 - How much loss/ downtime is OK?
 - Post disaster response
 - New system model?
 - Revised uncertainties?
 - Acceptable risk?
Challenges – system modeling

- Modeling system in near failure conditions
 - Efficient simulations
 - Non-linear models
- Missing important system failure modes
- Over-estimating redundancy
 - Causally related dependence
 - Associative dependence
- Using instrumented/eyewitness data
 - From normal and damaged states
 - For estimating extent of damage
 - For directing disaster response operations
Efficient simulations

Basic Monte Carlo Simulations

\[P_f = P\left(g(X) < 0 \right) = \int_{\Omega} \mathbb{I}\left(g(X) < 0 \right) f_X(x) \, dx \approx \frac{1}{N} \sum \mathbb{I}_i \]

Relative error \(\approx \frac{1}{\sqrt{P_f N}} \)

Very low efficiency for low failure probability

- Large computational demand
- Need efficient simulation schemes
Efficient simulations

Subset simulations involving Markov Chain Monte Carlo moves

Nested sets:
\[P(F) = P(F_1)P(F_2 | F_1)P(F_3 | F_2) \ldots \ldots P(F_m | F_{m-1}) \]

- Each conditional probability is large
- First step involves basic MCS
- Subsequent steps invoke MCMC (with modified Metropolis-Hastings algorithm)

Can be very efficient for low \(P_f \)

Can have very large errors
Efficient simulations

Optimization: tradeoff between error and accuracy
• What is the minimum possible error?
• What is the best simulation scheme?
Challenges – uncertainty quantification

• **In future loads**
 • Geophysical hazards
 • Intentional harm, etc.

• In damaged system properties

• In uncertainty propagation through a complex system

• In human intervention/error after disaster
Load modeling

• Estimation of:
 – Maximum load during design life
 – First passage time from safety to failure

• Issues:
 – Non stationarity
 – Short-term or long-term dependence
 – Clustering effects
 – Periodicity
Load modeling

Lifetime maximum distribution

- Limiting distribution of maxima
 \[Z_n = \max(X_1, X_2, \ldots, X_n) \sim \text{H} \quad \text{II} \to \text{II} \]

- Measure of average cluster size:
 \[\hat{\alpha}_n(x; r, n) = \frac{\sum_{i=1}^{n} I_{X_i > x} \geq M_{i+1, r}}{\sum_{i=1}^{n} I_{X_i > x}} \quad r \geq 2 \]

Estimation of extremal index

\[y = \alpha + \beta_1 q^{**} \beta_2 \]

\[\alpha = 0.93431 \]

\[\beta_1 = -1.1952 \]

\[\beta_2 = 0.95562 \]
Challenges: risk quantification

• How safe is safe enough?
 – How much risk to life, property and environment is OK vis-à-vis the benefits?
 – How much money to buy additional safety?
• What failure costs are to be taken into account?
• How to communicate the proper risk?
 – Difference between actual risk and perceived risk
 – Tolerable risk may change with time
Being alive (70+/India)
Being alive (70+/USA)
Smoking (all ages/USA)
Smoking (all ages/India)
2 wheelers (India)
Car riding (USA)
Car riding (India)
Walking (India)
Commercial flying (world)
Terrorism (India)
Lightning strike (India)
Lightning strike (USA)

Acceptable risk

- Add exposure
- Add involuntary risk
- Add dread risk
Acceptable risk

- Smoking (all ages/USA)
- Smoking (all ages/India)
- Cars - India
- Cars - US
- Buildings - Mumbai
- Buildings - New Delhi
- Lightning strike (India)
- Lightning strike (USA)
- Passenger shipping
- Commercial flying per plane
- Merchant shipping
- NPP data (post Fukushima)
- NPP data (pre Fukushima)
- NPP PRA (Death)
- NPP PRA (Evacuations)

- Acceptable Risk (reduced exposure)
- Acceptable Risk (full exposure)

ANNUAL PROBABILITY

DEATHS → 1 10 10² 10³ 10⁴

COST IN DOLLARS → 10⁶ 10⁷ 10⁸ 10⁹ 10¹⁰ 10¹¹ 10¹²

EVACUATIONS →

Societal risk
Conclusions

• Modern infrastructure systems
 – Large failure consequences
 – Damage/failure can occur

• Thinking beyond failure

• Challenges
 – System modeling
 – Uncertainty quantification
 – Risk assessment
Acknowledgments

Students:
• Vikky Masih
• Debarshi Sen
• Aritra Chatterjee
• Subhamoy Sen
• Advait Bapat
• Gunjan Agrawal
• S Sriram
• Atreyee Bhaumik
• Sri Kalyan
• Mainak Bhattacharyya
• Puneet Patra
• Degang Li
• Michelle Bensi

Funding:
• Office of Naval Research, USA
• Delaware Dept. of Transportation, USA
• Bhabha Atomic Research Centre, India
• Department of Science and Technology, India
• Defence Research and Development Organization, India
Thank you