Engineering Tissue-to-Tissue Interfaces and the Formation of Complex Tissues

Helen H. Lu, Ph.D.

US Frontier of Engineering (USFOE)
September 15, 2012

Biomaterials and Interface Tissue Engineering Laboratory
Department of Biomedical Engineering
Columbia University in the City of New York
Tissue Engineering

Skalak 1988, Langer and Vacanti 1993
Tissue Engineering: the Next Generation
Engineering Complex Tissues

• Assemble or connect more than one type of tissue

• Interfaces between these different tissue types are critical for engineering collective functionality

Tissue Engineering, 2006
Challenges in Orthopedic Tissue Engineering

• Soft tissues
 - Articular cartilage
 - Ligaments
 - Tendons

• Lack of graft-bone integration
 – Compromises long term functionality

• Challenge
 – How to achieve BIOLOGICAL FIXATION of soft tissue to bone?
Interface Tissue Engineering

Tissue-to-Tissue Interfaces

- Soft tissues have limited regeneration potential
- Ligament-to-bone interface
 - Anterior cruciate ligament (ACL) graft-to-bone integration
- Tendon-to-Bone interface
- Bridging tissues to form organ systems
- Osteochondral interface

Clinical Challenge

Interface Characterization

Cell-Cell Interactions

Scaffold Design

In Vitro Testing

In Vivo Testing
How to Connect a Rope to the Wall?

- **Multiple Tissue and Cell Types**

 - Ligament (L) – Fibroblasts
 - Fibrocartilage – Fibrochondrocytes
 - Non-Mineralized Fibrocartilage (FC)
 - Mineralized Fibrocartilage (MFC)
 - Bone (B) – Osteoblasts

- **A gradient of cellular, chemical and mechanical properties**

 - Minimize the formation of stress concentrations
 (Butler et al., 1978, Woo et al., 1988, Matyas et al., 1995, Gao et al., 1996)

 - Load transfer between soft and hard tissues (Woo SL, et al. 1988)
Age-Related Changes

Neonatal

- L
- NFC
- MFC
- B

Immature

Mature

Goldner’s Trichrome Stain, 50x.

Picro Sirius Stain under polarized light, 50x.

Wang et al., JOR 24:1745-1755, 2006
Mechanical Properties

• Mechanical properties of the interface is not known

• Ultrasound Elastography

 (Konofagou et al, Ultrasound in Medicine and Biology, 1998)

 – Provides information on tissue mechanical properties
 – Permits the imaging of strain distribution within tissues
 – RF data acquired at 5 MHz, 54 frames/s during loading
 – Speckle tracking analysis

Gradient of Mechanical Response

- **Displacement Map**
 - Variations in displacement from ligament to bone

- **Strain Map**
 - Yellow – Red \rightarrow Tensile Strain ($+\varepsilon_{yy}$)
 - Light Blue – Dark Blue \rightarrow Compressive Strain ($-\varepsilon_{yy}$)

Spalazzi et al., JOR, 2006
• Unconfined compression and image analyses (Schinagl et al., 1999, Wang et al., 2002)

• Region-dependent variations in displacement and incremental strain, across insertion
 – Strain: FC > B

(Moffat et al., ASME 2005 Masters Research Award)
Axial stress and Young’s modulus exhibit depth-dependent variations for tibial and femoral samples:

\[\sigma_{\text{MFC}} > \sigma_{\text{NFC}} \text{ and } E_{\text{MFC}} > E_{\text{NFC}} \]

\[(n=4) \]

Moffat et al., PNAS, 2008
Structure-Function: Mineral

NFC

MFC

Bone
How to Regenerate the Interface?

- Mechanism of interface regeneration is not known

- Neo-fibrocartilage formation was observed where soft tissue and bone are in direct contact (Rodeo et al., 1993; Weiler et al., 2002; Liu et al., 1997; Yoshiya et al., 2000; Anderson et al., 2001; Panni et al., 1997; Chen et al., 2003; Grana et al., 1994)
 - Non-anatomical
 - Fibrocartilage can be regenerated

- Examine the role of fibroblast-osteoblast interactions in initiating fibrochondrogenic differentiation

- Stem cell niche at various tissue-to-tissue junctions
Osteoblast-Fibroblast Co-Culture

- Homotypic and heterotypic interactions
- Paracrine/Autocrine interactions

Microchannel design

(Wang et al., JOR, 2007)
Cellular Interactions

- **Fibroblast** Osteoblast interactions during co-culture

Day 0, 5x

Day 1, 5x

Day 2, 5x
Osteoblast-Fibroblast Interactions

- Co-culturing osteoblasts and fibroblasts results in changes in respective phenotypes (Wang et al., JOR, 2007)
 - Suppression of cell proliferation
 - Suppression of osteoblast ALP activity
 - Suppression of mineralization
 - Increased ectopic fibroblast mineralization and ALP activity
 - Expression of fibrocartilage interface-related markers

- Triculture studies revealed that osteoblast-fibroblast interaction promoted the fibrochondrogenic differentiation of mesenchymal stem cells (Wang et al. IEEE, 2007)

A co-culture well after cell seeding (Wang et al. 2007)

Tri-Culture Model
(Wang et al., 2007)
Cellular Interaction Mechanism

• **Mode of cellular interactions**
 - Secreted soluble factors and cytokines
 - Chemical messengers directing both local and systemic cellular communications
 (Canalis et al., 1988; Bhatia et al., 1999; Lu et al., 2007)
 - Direct physical contact between cells
 - Important in the dynamic regulation of cell-cell adhesion, communication and tissue development
 (Gumbiner, 2005; Kii et al., 2004; Leckband et al., 2006)

• **Maintenance and repair of tissue could be tightly controlled by these cellular interactions**
 (Waldman et al., 2003; Alsberg et al., 2002; Lu & Jiang, 2005)
Bioinspired Design Criteria

- Three phases to support ligament-, fibrocartilage- and bone-like tissues
 - Controlled matrix heterogeneity
- Continuous & interconnected phases to support heterotypic interactions of interface-relevant cell populations
- Gradient of mechanical properties comparable to those of the ligament insertion site
- Biodegradable for host-mediated interface regeneration

Spalazzi et al, 2006, 2008; Moffat et al., 2008; Wang et al, 2006, 2007, Tsai et al., 2005, Lu and Jiang, 2005
Scaffold for Interface Regeneration

- **Biomimetic Triphasic Scaffold**
 - Phase A: Polylactide-co-glycolide (PLGA)
 - Phase B: PLGA Microspheres
 - Phase C: PLGA–Bioactive Glass Composite

 (Lu et al, JBMR 2003; Lu et al., Biomaterials, 2005)

- **Co-culture of human osteoblasts and fibroblasts on 3-D scaffolds**

 - **Phase A**
 - **Phase B**
 - **Phase C**

 Seeding Density: 5x10^4 cells/cm^2

 Spalazzi et al, Tissue Engineering, 2006
In Vivo Cell Tracking

<table>
<thead>
<tr>
<th>Phase A</th>
<th>Phase B</th>
<th>Phase C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fibroblasts</td>
<td>chondrocytes</td>
<td>osteoblasts</td>
</tr>
</tbody>
</table>

| **Week 4** |
| fibroblasts | chondrocytes | osteoblasts |
In Vivo

Mechanical Properties

Mechanical Properties

- *p* < 0.05
- *n* = 6

In Vivo

- Compressive Modulus (MPa)
 - Acellular
 - Co-Cultured

- Bar graph showing compressive modulus at Week 0 and Week 4:
 - Week 0: Acellular and Co-Cultured have similar values.
 - Week 4: Acellular has a higher compressive modulus compared to Co-Cultured.
Phase-specific Mineral Deposition

- Mineralized matrix formation observed in all groups
- Zonal distribution of mineral confined to Phase C
Multi-Tissue Formation
Compositionally Distinct & Structurally Contiguous

Week 4
5x
Clinical Application

- Incorporation of multi-phasic scaffold and onto ACL reconstruction grafts
 - Synthetic tissue engineered grafts
 - Soft tissue autografts or allografts
 - Induction of fibrocartilage formation on the tendon graft

- Biological Fixation
- Multi-tissue formation

*modified from www.nucleusinc.com
What is Next: Stem Cells

Phase A
- fibroblasts

Phase B
- chondrocytes

Phase C
- osteoblasts

- Feasibility – multiple cell sources required
- Stem Cell-Mediated Interface Regeneration
 - Fibroblasts
 - Osteoblasts
 - Chondrocytes
Growth Factor Gradient

Peret and Murphy, Adv. Funct. Mat., 2008
Gradient Scaffolds: Growth Factors

Polymer + Solvent + Growth Factor (TGF-β or BMP-2) + Nanophase Material

Aqueous non-solvent

To frequency generator

Piezoelectric transducer

Custom nozzle

Sinter Microspheres

TGF-β microspheres

BMP-2 microspheres

Axis of variation

100% Chondrogenic

100% Osteogenic
Scaffoldless Approach

What is NEXT?

- Higher mineral to matrix ratio (mineral content) in bone and mineralized fibrocartilage
- Mineral content higher in tibial and femoral bone compared to femoral insertion
Engineering Gradient Scaffolds

Hydrogels

Electrospun Nanofibers

Gas-Foamed

Salt-Leached

Freeform Fabrication

Topography Library

Combine different fabrication approaches

Reviews:
- Simon et al., Comb Chem H T Scr, 2009
- Seidi et al., Acta Biomater, 2011

- Chatterjee et al., Biomaterials, 2010
- Ramalingam et al., J Biomat Appl, in press
- Li et al., Nano Letters, 2009
- Chatterjee et al., J Funct. Biomat., in press
- Simon et al., Rev Sci Instrum, 2007
- Yang et al., Adv Mater, 2008
- Pirano et al, Lab Chip, 2012
- Kumar et al., Biomaterials, 2011
Gradations in Mineral

Li et al, Nano Letters, 2009
Cell-Mediated Gradient

- Runx-2 transfection gradient to control fibroblast mineralization

Phillips et al, PNAS, 2008
Bioinspired Scaffold: Complex Tissues

<table>
<thead>
<tr>
<th>Multi-Tissue Native Interface</th>
<th>Regional Collagen Distribution</th>
<th>Biomimetic Multi-phased Scaffold</th>
<th>Multi-Tissue Formation \textit{In Vitro}</th>
<th>Multi-Tissue Formation \textit{In Vivo}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligament</td>
<td>Ligament</td>
<td>Phase A</td>
<td>Phase A</td>
<td>Phase A</td>
</tr>
<tr>
<td>Fibrocartilage</td>
<td>Fibrocartilage</td>
<td>Phase B</td>
<td>Phase B</td>
<td>Phase B</td>
</tr>
<tr>
<td>Bone</td>
<td>Bone</td>
<td>Phase C</td>
<td>Phase C</td>
<td>Phase C</td>
</tr>
</tbody>
</table>

C

Regional Collagen Distribution

Biomimetic Multi-phased Scaffold

Multi-Tissue Formation \textit{In Vitro}

Multi-Tissue Formation \textit{In Vivo}

Biological Graft Fixation and Integrative Soft Tissue Repair

Moffat et al, CSM, 2009
Challenges in Interface Tissue Engineering

• **Mechanism of Interface Regeneration**
 – Biological: cell to cell interactions
 – Chemical: growth factors or proteins
 – Physical: mechanical, electrical

• **Structure-Function Relationships at the Soft Tissue-Bone Interface**

• *Biomimetic* and *Bioactive* Scaffold Design
 - Strategic Biomimicry

• **Controlled Heterogeneity on Tissue Engineered Scaffolds *In Vivo***
ACKNOWLEDGEMENTS