ADDITIVE MANUFACTURING:
AN EXPOSÉ ON THE DIVERSITY OF INDUSTRIAL USE

National Academy of Engineering
German-American Frontiers of Engineering
Irvine, CA
April 26, 2013

Tim Shinbara
Technical Director
AMT - The Association For Manufacturing Technology
Agenda

• Introduction
• Requirements
• Applications
• Challenges & Opportunities
• Summary & Conclusion
Agenda

- Introduction

Requirements
 - How AM Answers the Call
 - Technology Alignments

- Applications
- Challenges & Opportunities
- Summary & Conclusion
Requirements: How Additive Answers the Call

1st: Affordability
- Reduce tooling, waste
- Complexity = Simplicity

2nd: Smart(er) Manufacturing
- Integrate processes
- Support RP & production

3rd: Optimize Product Design
- Reduce weight, Support modularity
- Multi-functional parts

Traditionally: 9 piece welded duct assembly
AM: 2-piece bonded assembly
F-35 representative parts

With Additive You Can Design for \textbf{Functionality}
Requirements: Technology Alignments

Phase

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Design/Engineering</th>
<th>Prototype</th>
<th>Low Volume Production</th>
<th>Mass Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tooling & Molding</td>
<td>Composites</td>
<td>QuantumCast™ Cast Urethanes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNC</td>
<td>SLS*</td>
<td>DMLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D Printing (PolyJet)</td>
<td>SLS*</td>
<td>FDM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z-Corp 3D Prints</td>
<td>Foam/Modeling Board</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Agenda

• Introduction
• Requirements

• Applications
 • Snap Shot
 • Industrial Use
 • Diversity
• Challenges & Opportunities
• Summary & Conclusion
Applications: Snap Shot

- **Polymeric Components**
 - **Laser Sintering (LS)**
 - Low-temp, non-structural (Aero, Auto)
 - FDA 510(k)-approved (implants)
 - **Hybrid Applications**
 - Embedded sensors / continuous fiber

- **Metallic Components**
 - **Laser and Electron Beam Melting**
 - Implants, replacements
 - Aerospace components

Courtesy Materialise

Creates Difficult to Machine Shapes

Enables Hybrid Materials

Improves Performance

Provides Similar Mechanical Properties (NGC)
Applications: *Industrial Use*

Composite Interface Fitting (J WST)

<table>
<thead>
<tr>
<th>Traditional Manufacturing</th>
<th>Additive Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>~500 CNC machining hours</td>
<td>32 build hours</td>
</tr>
<tr>
<td>~16 – 26 week lead time</td>
<td>~4 day lead time</td>
</tr>
<tr>
<td>Nominal</td>
<td>60% - 70% cost savings</td>
</tr>
</tbody>
</table>

![Composite Interface Fitting (J WST)](image)

Hot Air Mixer (UCAS-D)

<table>
<thead>
<tr>
<th>Traditional Manufacturing</th>
<th>Additive Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy-to-Fly ratio 10 – 20:1</td>
<td>Buy-to-Fly ratio ~2:1</td>
</tr>
<tr>
<td>Min. 4-pieces w/ 2 welds</td>
<td>1 piece w/ no welding</td>
</tr>
<tr>
<td>Nominal</td>
<td>35% - 45% cost savings</td>
</tr>
</tbody>
</table>

![Hot Air Mixer (UCAS-D)](image)

Courtesy of Northrop Grumman Corp. and CalRam Inc.
SLS Gimbal
Aeryon Labs Inc. | Aeryon Scout UAV | Ontario, Canada
Air Duct – Orbis Flying Hospital

Meet all FAA (8130-3) requirements for flame, smoke, toxicity and airworthiness while remaining lightweight. (Courtesy of Solid Concepts, Inc.)
SLS Fuel Tanks
Area-I | Georgia
SLS of fuel tank, ailerons, control surfaces, mounting plates, more...

Courtesy of Solid Concepts Inc.
Applications: *Oil & Gas / Automotive*

- **70% Savings in Material and Cost**
 - Courtesy: DM3D

- **35% Weight Savings, 20% Greater Rigidity**
 - Courtesy: ExOne

- Fuel Tanks (Solid Concepts):
 - Internal Baffles (above)
 - Automotive Racing (below)

- **70% Savings in Material and Cost**
 - Courtesy: Rennteam Uni Stuttgart

Trending From Prototyping-Only To Now *Include Production*
Applications: Medical & Dental

Polymeric (PEKK) & Metallic (Ti-Al6-V4) Applications

FDA-Approved

Courtesy: OPM
Applications: Diversity

- Large Structures
- Sensors
- Antennae
- Functional Apparel
- Traditional Machined Casting
- Additive Selectively Builds
- Weight Reductions
- Multi-Functional Parts
- Toys & Model Hobbyists
- Complex Parts
- Functional Furniture

Additive Manufacturing: An Enabler for Next-Gen Production
Agenda

- Introduction
- Requirements
- Applications

- Challenges & Opportunities
 - Industrial Base & Maker Movement
 - Roadmap Summaries
 - NAMII

- Summary & Conclusion
Challenges: Industrial Base & Maker Movement

Need: Harness Maker Momentum to Influence Industrial Sector
Challenges: Industrial Base & Maker Movement

2011 US Market

Machine Tool Source: AMT
Opportunities: Industry Metrics
Source – http://wohlersassociates.com

PRODUCTS: Direct Part Manufacturing (19.2%)
Functional Models (18.4%)

MARKETS: Consumer & Auto ~40%
Aero & Medical / Dental Accelerating

Trending From Prototyping-Only To Now Include Production
Challenges: Technical Summaries

Taguchi DOE for Optimized Density (>98% with bed consistency)

Need: Increased Understanding of Processes & Accelerated Metallic Maturation (Materials & Processes)
• Industrial Commons
• Technology Transition & Commercialization
• Workforce & Education

Opportunity: Collaborative Innovation Focused on Advancing AM Industry
Agenda

• Introduction
• Requirements
• Applications
• Challenges & Opportunities

• Summary & Conclusion
Summary & Conclusion

• The Technology
 – No longer just “emerging”
 – Design for functionality
 – AM is an enabler, compliment

• The Business
 – Increase education to non-AM communities
 – Prototyping to functional models to end-use production
 – AM discriminator: Knowing how to use AM

Additive Is A Compliment to Current Manufacturing
Tim Shinbara
Technical Director, AMT
tshinbarak@AMTonline.org
703.827.5243 (desk)