Nash-Stackelberg games in transportation networks: leveraging the power of smartphones for traffic monitoring and management

Alexandre Bayen
Electrical Engineering and Computer Science
Civil and Environmental Engineering
UC Berkeley

http://traffic.berkeley.edu http://float.berkeley.edu
"Classical" vs. "modern" source of traffic information

Dedicated infrastructure:
- Self inductive loops
- Pavement sensors
- FasTrak, EZ-pass RFID
- Cameras
- Radars
- License plate readers

Mobile devices:
- 1+B smartphones on earth

![Graph showing the number of mobile devices shipped per year (log scale).](image)
2007 (511.org) vs. 2010
Mobile Millennium (2008-2011)

An early instantiation of participatory sensing

- Funded by California DOT (DRI), US DOT, Nokia, NAVTEQ, NSF
- Initially, 5000 downloads of the FIRST Nokia traffic app worldwide
- Today: gathers about 60 million data points / day from dozen of sources (smartphones, taxis, fleets, static sensors, public feeds)
- Provides real-time nowcast (soon forecast) of highway and arterial traffic, provide routing and data fusion tools.
Example: 0.5% of Mobile Millennium data (one day)
Example: 0.5% of *Mobile Millennium* data (one day)
Data flow in traffic monitoring systems
Challenges of traffic estimation

Example: combined path-inference / map matching:
 - Naïve projection on map does not work.
 - Routing cannot be decoupled from map matching
 - Probabilistic model needs to be built (most probable travel time)
 - Learning (must be done from sparse data)
 - Time dynamics must be captured (streaming data)
 - Real-time computations (implementation architecture must reflect computational needs)
Granularity of the data (GPS data)

Physical model and data assimilation enable state estimation
- Works even with low penetration rate
- Interpolation will just not do the job
Flow reconstruction (inverse modeling)

Physical model and data assimilation enable state estimation
- Works even with low penetration rate
- Interpolation will just not do the job

10 measurement points
Flow reconstruction (inverse modeling)

Physical model and data assimilation enable state estimation
- Works even with low penetration rate
- Interpolation will just not do the job
Creation of a private – public marketplace

How can the government acquire private sector data
 – Aging infrastructure does not support data needs anymore
 – Procurement procedures are new to the government
 – Pricing of this new data is unknown too
 – Contract conformance is new as well
 – 2010-2011: first ever procurement of GPS data by the State of California, administered by UC Berkeley.
How to buy data: example of problems

How to build good quality metrics for procurement

Example problems

- Delay of the data
- Time variations in the data
- Spatial coverage of the data
Mission 2015: integrated corridor management

- BART Express Lanes
- HOT/HOV control
- Local Arterial Traffic Signals
- Parking
- Ramp Metering
- Smartphone enabled reroute
- CMS
- Express Lanes HOT/HOV control
- BART
- Local Arterial Traffic Signals
Can people collect data for good behavior?

Wherever public agencies would want traffic to be reduced:
– Can drivers be incentivized to leave the freeway?
– In which conditions does this make sense?
 – Recurring congestion vs. incident response
– Success stories and pitfalls: sustainability
An enormous potential for behavior change

Efficient use of social networks
- Frustration on congestion is enormous
- Lack of information prevents reroutes
- Lack of coordination makes reroutes dangerous for social optimality
Congestion Routing Games

Goal: to allocate flow optimally in a parallel network (i.e. a network in which alternative routes are possible)

- Parallel network, N edges

- Continuum of players, total flow demand \(r \) (jobs/s, cars/s)
- Individual latency \(\ell_n(q_n) \) on link \(n \) depends on total flow \(q_n \)
- Total cost:

\[
C(q) = \sum_{n=1}^{N} q_n \ell_n(q_n)
\]
Definition of the Stackelberg game

Stackelberg game

- First, leader routes **compliant** drivers αr : strategy $s \in \mathbb{R}^N_+$
- Second, followers (non-compliant drivers $(1 - \alpha)r$) choose their routes selfishly: strategy $t(s)$

Leader seeks to minimize system-wide cost: $\min_s C(s + t(s))$

Optimal Stackelberg strategies $\arg\min C(s + t(s))$ are NP-hard to compute (in the size N).
The emergence of the human as a sensor

Best known sensor for earthquakes: accelerometer
- USGS has dedicated array of embedded accelerometers
- Human is faster than USGS by posting on Twitter
- All smartphones have accelerometers, UCLA already succeeded in capturing a P-wave from a smartphone (CENS)
- Information could be enhanced by having additional accelerometer information available.

UC Berkeley iShake app and shake table testing procedure

USGS shakemap (from static USGS sensors)
Floating Sensor Network

Floating sensor network

- Summer 2012: deployment of 100 floating / submersible units in the San Francisco Bay / Sacramento Delta, DWR
- Stillwater, OK, rapid levee breech repair demo, DHS
Floating Sensor Network

Floating sensor network

- Summer 2012: deployment of 100 floating / submersible units in the San Francisco Bay / Sacramento Delta, DWR
- Stillwater, OK, rapid levee breech repair demo, DHS
Floating Sensor Network

Floating sensor network
- Summer 2012: deployment of 100 floating/submersible units in the San Francisco Bay/Sacramento Delta, DWR
- Stillwater, OK, rapid levee breech repair demo, DHS
"Surely You're Joking, Mr. Feynman!"
Adventures of a Curious Character

The outrageous exploits of the world's most outspoken Nobel Prize-winning scientist

Richard P. Feynman
Author of "What Do You Care What Other People Think?"