Sensing Controls for Space-Based Planet Finding

Dr. Jonathan Black
Associate Professor, Aerospace Engineering
Associate Director of Research for Aerospace Systems, Hume Center
Northrop Grumman Senior Faculty Fellow in C4ISR

Ted and Karyn Hume Center for National Security and Technology
Outline

• Overview
• Sensing challenges on Probe-Class Exoplanet Direct Imaging mission concept
• Computer vision (CV) based methods for small satellite proximity operations
• Applications
• Future challenges and future directions
Overview

- Detection and characterization of Earth twins is the most challenging of the space-based planet finding missions.
 - Earth-sized planets with Earth's geometric albedo of 0.2 in the habitable zone
- Proposed designs of direct imaging missions require formation flying of starshades dozens of meters in diameter with telescopes up to four meters in diameter

Figure 4.7-1. Simulated Exo-C image of the 47 UMa system for V band and 2 days integration. The occulted star is at center. Planet c is seen near the inner working angle at top right, while planet d is visible to top left. A hypothetical debris disk extends around them and out of the field of view. [2]
Exo-S: Starshade Probe-Class Exoplanet Direct Imaging

- Design Reference Mission Configurations
 - Kepler-based
 - Extensive flight heritage

Exo-S mission overviews for “Rendezvous Mission” in which starshade works with existing WFIRST observatory and “Dedicated Mission” in which starshade is co-launched with dedicated small observatory. [1]
Figure 6.3-1. Formation flying modes and requirements. [1]
Sensing Controls for Space-Based Planet Finding

Formation Flying

- To achieve imaging, formation flying requires laterally aligning the telescope to within 1 m of the starshade-star axis at 30,000 km – 50,000 km range
- Sub-meter position control is routine in orbital rendezvous and docking
 - Sensing is altogether more challenging
 - Positions must be sensed 3 to 5 times more finely than the control requirement
 - Lateral offset of the starshade must be sensed to 30 cm at max separation
 - Bearing measurement precision of 6 nrad (1.25 mas).

Figure 6.3-2. Formation sensing, guidance, and control by formation mode. [1]
Small Satellite Proximity Operations and Formation Flying

Overview

- Gravity Recovery And Climate Experiment (GRACE) [3]
 - Two identical satellites orbit one behind the other in the same orbital plane at an approximate distance of 220 km
 - K-band Ranging System (KBR)
 - Provides precise (within 10 µm) measurements of the distance change between the two satellites needed to measure fluctuations in gravity.
 - Ultra Stable Oscillator (USO)
 - Provides frequency generation for the K-band ranging system
 - GRACE-FO, 2017 (planned)
 - Will include laser ranging

- Space mission and instrument design to image the Habitable Zone of Alpha Centauri (SSC15-XII-1) [4]
 - SMEX-Class, 45 cm dia coronagraph
 - Mini-COR: A Miniature Coronagraph for Interplanetary CubeSats (SSC15-XII-6) [5]
 - Science grade observations of corona and coronal transients from a miniaturized coronagraph
 - Pointing accuracy requirement 60 arcsec
 - Pointing stability over 20 second exposure requirement 10 arcsec
Small Satellite Proximity Operations and Formation Flying

Motivation

- Automated proximity operations (proxops) enable new mission capabilities and enhance SSA
- Current technology has limitations
 - Active illumination (DARPA’s Orbital Express, SpaceX Dragon capsule, ISS SPHERES)
 - Pose estimation based on current view and target model
 - Size, weight, and power (SWAP) limited
- Computer vision (CV) based methods only require camera and CPU
 - No prior knowledge of target required
 - Star tracker-like subsystem on smaller platforms

Research thus far

- Developed a monocular SLAM method for implementation in a proxops simulator
 - SLAM – building a 3D map from relative motion while keeping track of the camera pose (location and orientation)
 - Monocular – explore what is possible with one camera for minimal size constraints
- Designed for the space environment (reflective surfaces, dynamic backgrounds)
- Near real-time operation
- Characterized achieved run-time and accuracy
- Ease of code porting to multiple platforms
Methodology

- **Perspective-n-point (PnP) problem**
 - Estimating the pose of one image (Pn) from 2D points with known 3D locations

- **Sequential model construction**
 - Track 2D points from initialization to subsequent frames
 - Use PnP to estimate new pose
 - Proactively triangulate new points as they appear (based on relative motion rate)

Triangulating new points as they appear
CV Feature Detection and Tracking

• Features from Accelerated Segment Test (FAST) corner detector – designed to operate at real-time frame rate [7]
• KLT tracker – sparse optical flow algorithm [8]
 • Updates feature location in next video frame
 • Searches for the most similar window in vicinity
• BRIEF feature – very fast running feature descriptor [9]
 • Used to verify point tracks over larger time scale

Initial FAST corner detection

KLT tracking through rotation without BRIEF
CV Methodology

- Points rotate out of view, new target locations appear
 - Point re-detection based on density in sub-regions
- Error reduction
 - Random sampling and consensus (RANSAC) on the PnP problem
 - Point life threshold based on current motion rate
 - Bundle adjustment – 3D structure and pose optimization based on multiple images
CV Accuracy Analysis Results

- **Sequence 1 stats/pose estimate:**
 - Avg. err: 0.31°
 - STD: 0.27°
 - RMS: 0.46°

Sequence 1 estimated vs. actual vertical axis rotation

Sequence 1 SLAM results: truth and estimated camera pose

Synthetic sequence accuracy results
Summary of CV work

- **Goals accomplished** – space-specific SLAM method
- **Advantages**
 - Produces pose estimates from single target in portion of FOV
 - Robust to dynamic backgrounds and reflective targets
 - Acceptable accuracy, near real-time (avg. 11.8 fps)
 - No target knowledge required, low SWAP requirement
- **Limitations**
 - Sun in FOV, target structural changes, motion blur
- **Paves way for automated proxops on platforms as small as a CubeSat**

Video sequence with saturation [10]
Additional Video Processing

- **Bayesian Point Tracking** [11]
 - Bank of Kalman filters
 - Linear image-plane dynamics
 - Global nearest neighbor association

- **Applications**
 - Object-of-interest segmentation
 - Close-proximity motion estimation
 - Combine with traditional feature tracking techniques

- **Implement on UAS/CubeSat-class hardware**
Autonomous State Estimation and Control For Proximity Operations

- State estimation and observer design for orbit determination [12]
 - High-fidelity propagation incorporating perturbations
- Trajectory optimization for spacecraft relative motion
 - Minimum time
 - Minimum energy
- Nonlinear tracking controller design
 - Robust control (e.g. sliding mode)
 - Adaptive control (e.g. model reference)
Future Challenges and Future Directions

- Sensing and control as mission support
- Combined orbit and attitude control
- Combined estimation and tracking control
- Show system feasibility with small sats / COTS hardware
- Cognition applied to satellite autonomy
Thank you!

jonathan.black@vt.edu
www.hume.vt.edu/research/aero
www.space.vt.edu
www.aoe.vt.edu
References